找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Structure and Geometry of Lie Groups; Joachim Hilgert,Karl-Hermann Neeb Book 2012 Springer Science+Business Media, LLC 2012 Lie algebras.L

[復(fù)制鏈接]
樓主: 大小
11#
發(fā)表于 2025-3-23 10:24:12 | 只看該作者
12#
發(fā)表于 2025-3-23 16:11:30 | 只看該作者
13#
發(fā)表于 2025-3-23 21:47:48 | 只看該作者
14#
發(fā)表于 2025-3-24 02:03:33 | 只看該作者
Elementary Structure Theory of Lie Algebrasras of matrices, and we shall also see in Chapter?. below how to associate a Lie algebra to any Lie group. This correspondence is the guiding motivation behind the theory of finite-dimensional Lie algebras to which we now turn in some depth.
15#
發(fā)表于 2025-3-24 04:57:00 | 只看該作者
Representation Theory of Lie Algebrasly plays an important role in structural questions. In this chapter, we first introduce the universal enveloping algebra . of a Lie algebra .. This is a unital associative algebra containing . as a Lie subalgebra and is generated by .. It has the universal property that each representation of . exte
16#
發(fā)表于 2025-3-24 06:51:16 | 只看該作者
17#
發(fā)表于 2025-3-24 10:40:29 | 只看該作者
Basic Lie Theorys (multiplication and inversion) are smooth. Here we use vector fields to build the key tools of Lie theory. The Lie functor which associates a Lie algebra with a Lie group and the exponential function from the Lie algebra to the Lie group. They provide the means to translate global problems into in
18#
發(fā)表于 2025-3-24 15:37:47 | 只看該作者
Smooth Actions of Lie Groupsomorphic automorphisms of complex domains, or groups of canonical transformations in hamiltonian mechanics. In all these cases, one considers group actions on manifolds by smooth maps. Even though the focus of this book is the geometry and structure theory of Lie groups rather than their application
19#
發(fā)表于 2025-3-24 22:56:37 | 只看該作者
20#
發(fā)表于 2025-3-25 00:22:59 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 20:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
高邮市| 博野县| 铜山县| 新民市| 富民县| 宁晋县| 安远县| 延庆县| 新余市| 怀化市| 永康市| 姚安县| 兴安县| 旺苍县| 曲松县| 乌拉特前旗| 信阳市| 获嘉县| 常宁市| 义马市| 茌平县| 石城县| 门源| 庄河市| 江华| 岳阳市| 新竹市| 浠水县| 长丰县| 乌海市| 长白| 酒泉市| 澄迈县| 竹山县| 花莲市| 汉川市| 东方市| 喀喇| 青田县| 鄂州市| 南靖县|