找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Structural Wood Detailing in CAD Format; K. A. Zayat Book 1993 Springer Science+Business Media New York 1993 TJI.computer-aided design (CA

[復(fù)制鏈接]
樓主: iniquity
11#
發(fā)表于 2025-3-23 09:43:18 | 只看該作者
12#
發(fā)表于 2025-3-23 17:17:44 | 只看該作者
13#
發(fā)表于 2025-3-23 18:15:55 | 只看該作者
K. A. Zayatiguity, inaccuracy, incompleteness and roughness. Accordingly, many different mathematical models for dealing with these uncertainties, like probability, fuzzy set theory, Dempster-Shafer theory of evidence and rough set theory, have been introduced and also applied with great success in many fields
14#
發(fā)表于 2025-3-23 23:13:27 | 只看該作者
K. A. Zayatiguity, inaccuracy, incompleteness and roughness. Accordingly, many different mathematical models for dealing with these uncertainties, like probability, fuzzy set theory, Dempster-Shafer theory of evidence and rough set theory, have been introduced and also applied with great success in many fields
15#
發(fā)表于 2025-3-24 03:59:53 | 只看該作者
16#
發(fā)表于 2025-3-24 08:41:42 | 只看該作者
17#
發(fā)表于 2025-3-24 13:17:26 | 只看該作者
if ..?≡?5 mod 103 has any solutions. Since 5 is not congruent to 3 mod 4, the quadratic reciprocity law asserts that ..?≡?5 mod 103 and ..?≡?103 mod 5 are both solvable or both not. But solution of the latter congruence reduces to ..?≡?3 mod 5, which clearly has no solutions. Hence neither does ..?≡
18#
發(fā)表于 2025-3-24 15:15:18 | 只看該作者
K. A. Zayat in Sect.?. we begin with a discussion of the results from algebraic number theory that will be required, with Dedekind’s Ideal Distribution Theorem as the final goal of this section. The zeta function of an algebraic number field is defined and studied in Sect.?.; in particular, the Euler-Dedekind
19#
發(fā)表于 2025-3-24 20:17:13 | 只看該作者
20#
發(fā)表于 2025-3-25 00:56:01 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 15:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
开平市| 灵山县| 阿巴嘎旗| 安义县| 互助| 丹东市| 徐汇区| 河津市| 太湖县| 多伦县| 舞阳县| 南昌县| 怀仁县| 古丈县| 万年县| 安泽县| 嘉鱼县| 化德县| 齐齐哈尔市| 五莲县| 亚东县| 额敏县| 通城县| 丰都县| 白沙| 惠安县| 隆安县| 乐平市| 平凉市| 陇西县| 灵川县| 漯河市| 武乡县| 旅游| 扶沟县| 西充县| 行唐县| 汨罗市| 曲阜市| 武平县| 嘉定区|