找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Strings, Conformal Fields, and M-Theory; Michio Kaku Textbook 2000Latest edition Springer Science+Business Media New York 2000 Second quan

[復制鏈接]
樓主: 極大
11#
發(fā)表于 2025-3-23 10:56:54 | 只看該作者
2D Gravity and Matrix Models tunneling, formation of strings, etc. As a consequence, two approximations have been developed, large . methods and lattice gauge theory, to analyze gauge theories in the nonperturbative regime. However, both approaches are still in their infancy, and neither has given us definitive results.
12#
發(fā)表于 2025-3-23 16:27:02 | 只看該作者
13#
發(fā)表于 2025-3-23 19:27:30 | 只看該作者
D-Branes and CFT/ADS Dualityg nonpertur-bative dualities since it is believed that these BPS states are not renormalized. However, we have not actually constructed these objects and explored their dual properties. This will be the subject of this chapter [1-4].
14#
發(fā)表于 2025-3-24 02:16:08 | 只看該作者
15#
發(fā)表于 2025-3-24 05:32:13 | 只看該作者
16#
發(fā)表于 2025-3-24 08:48:37 | 只看該作者
Textbook 2000Latest editionrs review the fundamentals of string theory, making the presentation of the material self-contained while keeping overlap with the earlier book to a minimum. This book conveys the vitality of the current research and places readers at its forefront.
17#
發(fā)表于 2025-3-24 10:51:41 | 只看該作者
18#
發(fā)表于 2025-3-24 14:59:30 | 只看該作者
String Field Theoryories can be constructed using the methods presented in the previous chapters, and there is absolutely no concrete way in which to choose which, if any, of these millions of vacuums corresponds to our real world.
19#
發(fā)表于 2025-3-24 20:13:50 | 只看該作者
Knot Theory and Quantum Groupsand knot theory. Surprisingly, we will be able to use quantum field theory to generate new knot polynomials and analytic expressions for them. Knot theory, in turn, will be a tool by which we study conformal field theories and statistical mechanics, giving us a topological meaning to the Yang-Baxter relation.
20#
發(fā)表于 2025-3-25 00:40:35 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 21:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
台中县| 墨玉县| 沂水县| 桓仁| 游戏| 徐水县| 进贤县| 德格县| 靖边县| 岗巴县| 蓬溪县| 穆棱市| 宿州市| 长治县| 泰和县| 东丰县| 苍梧县| 昌黎县| 儋州市| 东阿县| 靖江市| 噶尔县| 奉贤区| 平塘县| 侯马市| 砚山县| 右玉县| 广安市| 永济市| 炎陵县| 华坪县| 抚顺市| 仁怀市| 安泽县| 平泉县| 杭锦旗| 济南市| 余江县| 潢川县| 富川| 吴忠市|