找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Stokes–Darcy Equations; Analytic and Numeric Ulrich Wilbrandt Book 2019 Springer Nature Switzerland AG 2019 stokes-darcy.trace.sobolev spac

[復(fù)制鏈接]
樓主: 方面
21#
發(fā)表于 2025-3-25 06:48:07 | 只看該作者
22#
發(fā)表于 2025-3-25 10:54:08 | 只看該作者
23#
發(fā)表于 2025-3-25 14:36:56 | 只看該作者
,Stokes–Darcy Equations,Let . be a Lipschitz domain split into two disjoint nonempty subdomains .. and .. which are Lipschitz, too. The index . refers to the Darcy subdomain where a porous medium is modeled, while the index . refers to the free flow domain with a Stokes model.
24#
發(fā)表于 2025-3-25 18:15:56 | 只看該作者
Algorithms,The Neumann–Neumann as well as the Robin–Robin systems (.) and (.) along with their decoupled variants (.) and (.) can be solved iteratively.
25#
發(fā)表于 2025-3-25 22:23:05 | 只看該作者
Numerical Results,The algorithms described in Chap. . are implemented in the . finite element code . (Wilbrandt et al., Comput Math Appl 74(1):74–88, 2017). In this chapter several examples from the literature are introduced and numerical results shown. To begin with, a more general discussion on numerical examples is given.
26#
發(fā)表于 2025-3-26 01:44:59 | 只看該作者
Ulrich WilbrandtThorough guide to the coupling of Stokes and Darcy equations.Includes numerical analysis and scientific computing.Almost all intermediate results are given with a rigorous proof.Special care is taken
27#
發(fā)表于 2025-3-26 07:23:47 | 只看該作者
28#
發(fā)表于 2025-3-26 10:40:02 | 只看該作者
978-3-030-02903-6Springer Nature Switzerland AG 2019
29#
發(fā)表于 2025-3-26 15:41:29 | 只看該作者
Stokes–Darcy Equations978-3-030-02904-3Series ISSN 2297-0320 Series E-ISSN 2297-0339
30#
發(fā)表于 2025-3-26 20:21:19 | 只看該作者
o have appeared within the last 50 years.Provides comprehens.Recent Work on Intrinsic Value. brings together for the first time many of the most important and influential writings on the topic of intrinsic value to have appeared in the last half-century. During this period, inquiry into the nature o
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 04:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
平利县| 广南县| 微山县| 盐城市| 犍为县| 永新县| 江陵县| 牙克石市| 定兴县| 区。| 金华市| 波密县| 清流县| 修文县| 孟村| 闽侯县| 屯昌县| 宜阳县| 日土县| 微博| 张家口市| 溧水县| 宁国市| 溧阳市| 保山市| 谷城县| 同心县| 舒兰市| 泾阳县| 营口市| 新宾| 南城县| 西乌珠穆沁旗| 青岛市| 米脂县| 融水| 沧州市| 洱源县| 古田县| 五指山市| 当雄县|