找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Stochastic Processes in Quantum Physics; Masao Nagasawa Book 2000 Springer Basel AG 2000 Brownian motion.EFE.Lévy process.Markov property.

[復制鏈接]
樓主: implicate
41#
發(fā)表于 2025-3-28 15:25:47 | 只看該作者
42#
發(fā)表于 2025-3-28 19:29:27 | 只看該作者
43#
發(fā)表于 2025-3-29 02:18:33 | 只看該作者
Non-Relativistic Quantum Theory,e movement . of quantum particles, accordingly. However, the interrelation between the equation of motion and the movement . of a particle(s) is not so direct as in classical mechanics, and we must go into deeper mathematical structures of diffusion processes to clarify the relation.
44#
發(fā)表于 2025-3-29 03:48:31 | 只看該作者
45#
發(fā)表于 2025-3-29 09:33:40 | 只看該作者
,Construction of the Schr?dinger Processes, solve the equation of motion (or the Schr?dinger equation) and apply the transformation of Markov processes by a multiplicative functional. In the second case we employ the stochastic variational principle.
46#
發(fā)表于 2025-3-29 13:49:25 | 只看該作者
47#
發(fā)表于 2025-3-29 18:57:22 | 只看該作者
Relativistic Quantum Particles, the stochastic theory to relativistic quantum particles. We will consider the relativistic Schr?dinger equation of a spinless particle in an electromagnetic field. It will be shown that the relativistic quantum particles no longer have continuous paths but move only through pure jumps in contrast t
48#
發(fā)表于 2025-3-29 22:13:22 | 只看該作者
Stochastic Differential Equations of Pure-Jumps,power generators which are in formal duality, and shown that the evolution equation has an equivalent formulation in terms of stochastic differential equations of pure-jumps. In this chapter the existence and uniqueness of solutions of the stochastic differential equations of pure-jumps will be prov
49#
發(fā)表于 2025-3-30 03:46:01 | 只看該作者
50#
發(fā)表于 2025-3-30 05:11:34 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 05:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
宁化县| 门源| 合阳县| 邻水| 博兴县| 日喀则市| 从江县| 固安县| 新化县| 浪卡子县| 定兴县| 鄂托克旗| 陆河县| 永康市| 都安| 双峰县| 张掖市| 醴陵市| 东丰县| 长顺县| 河曲县| 桑日县| 武邑县| 宣威市| 竹北市| 宝丰县| 安化县| 乌什县| 乐清市| 文昌市| 普安县| 龙陵县| 宁陕县| 普兰店市| 德格县| 高雄县| 长春市| 繁昌县| 沁阳市| 固安县| 奉新县|