找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Stochastic Processes in Quantum Physics; Masao Nagasawa Book 2000 Springer Basel AG 2000 Brownian motion.EFE.Lévy process.Markov property.

[復制鏈接]
樓主: implicate
41#
發(fā)表于 2025-3-28 15:25:47 | 只看該作者
42#
發(fā)表于 2025-3-28 19:29:27 | 只看該作者
43#
發(fā)表于 2025-3-29 02:18:33 | 只看該作者
Non-Relativistic Quantum Theory,e movement . of quantum particles, accordingly. However, the interrelation between the equation of motion and the movement . of a particle(s) is not so direct as in classical mechanics, and we must go into deeper mathematical structures of diffusion processes to clarify the relation.
44#
發(fā)表于 2025-3-29 03:48:31 | 只看該作者
45#
發(fā)表于 2025-3-29 09:33:40 | 只看該作者
,Construction of the Schr?dinger Processes, solve the equation of motion (or the Schr?dinger equation) and apply the transformation of Markov processes by a multiplicative functional. In the second case we employ the stochastic variational principle.
46#
發(fā)表于 2025-3-29 13:49:25 | 只看該作者
47#
發(fā)表于 2025-3-29 18:57:22 | 只看該作者
Relativistic Quantum Particles, the stochastic theory to relativistic quantum particles. We will consider the relativistic Schr?dinger equation of a spinless particle in an electromagnetic field. It will be shown that the relativistic quantum particles no longer have continuous paths but move only through pure jumps in contrast t
48#
發(fā)表于 2025-3-29 22:13:22 | 只看該作者
Stochastic Differential Equations of Pure-Jumps,power generators which are in formal duality, and shown that the evolution equation has an equivalent formulation in terms of stochastic differential equations of pure-jumps. In this chapter the existence and uniqueness of solutions of the stochastic differential equations of pure-jumps will be prov
49#
發(fā)表于 2025-3-30 03:46:01 | 只看該作者
50#
發(fā)表于 2025-3-30 05:11:34 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 05:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
利辛县| 西城区| 尚义县| 麻栗坡县| 仪陇县| 象州县| 镇雄县| 和平县| 乐东| 宜州市| 闽清县| 穆棱市| 冀州市| 浑源县| 永德县| 兴化市| 阿克陶县| 施甸县| 耿马| 石渠县| 大石桥市| 平山县| 青铜峡市| 临武县| 谢通门县| 峡江县| 宜兰市| 定南县| 望都县| 句容市| 得荣县| 绥宁县| 安多县| 丰台区| 玉龙| 舒城县| 海宁市| 金沙县| 黄大仙区| 海安县| 沐川县|