找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Stochastic Optimal Control in Infinite Dimension; Dynamic Programming Giorgio Fabbri,Fausto Gozzi,Andrzej ?wi?ch Book 2017 Springer Intern

[復(fù)制鏈接]
查看: 38021|回復(fù): 35
樓主
發(fā)表于 2025-3-21 17:33:13 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Stochastic Optimal Control in Infinite Dimension
副標(biāo)題Dynamic Programming
編輯Giorgio Fabbri,Fausto Gozzi,Andrzej ?wi?ch
視頻videohttp://file.papertrans.cn/879/878053/878053.mp4
概述Provides a systematic survey of the main available results, with proofs and references.Gives a complete presentation of the theory of regular and viscosity solutions of second-order HJB equations in i
叢書名稱Probability Theory and Stochastic Modelling
圖書封面Titlebook: Stochastic Optimal Control in Infinite Dimension; Dynamic Programming  Giorgio Fabbri,Fausto Gozzi,Andrzej ?wi?ch Book 2017 Springer Intern
描述.Providing an introduction to stochastic optimal control in in?nite dimension, this book gives a complete account of the theory of second-order HJB equations in in?nite-dimensional Hilbert spaces, focusing on its applicability to associated stochastic optimal control problems. It features a general introduction to optimal stochastic control, including basic results (e.g. the dynamic programming principle) with proofs, and provides examples of applications. A complete and up-to-date exposition of the existing theory of viscosity solutions and regular solutions of second-order HJB equations in Hilbert spaces is given, together with an extensive survey of other methods, with a full bibliography. In particular, Chapter 6, written by M. Fuhrman and G. Tessitore, surveys the theory of regular solutions of HJB equations arising in in?nite-dimensional stochastic control, via BSDEs. The book is of interest to both pure and applied researchers working in the control theory of stochastic PDEs,and in PDEs in in?nite dimension. Readers from other ?elds who want to learn the basic theory will also ?nd it useful. The prerequisites are: standard functional analysis, the theory of semigroups of ope
出版日期Book 2017
關(guān)鍵詞49Lxx, 93E20, 49L20, 35R15, 35Q93, 49L25, 65H15, 37L55; stochastic optimal control; infinite dimension
版次1
doihttps://doi.org/10.1007/978-3-319-53067-3
isbn_softcover978-3-319-85053-5
isbn_ebook978-3-319-53067-3Series ISSN 2199-3130 Series E-ISSN 2199-3149
issn_series 2199-3130
copyrightSpringer International Publishing AG 2017
The information of publication is updating

書目名稱Stochastic Optimal Control in Infinite Dimension影響因子(影響力)




書目名稱Stochastic Optimal Control in Infinite Dimension影響因子(影響力)學(xué)科排名




書目名稱Stochastic Optimal Control in Infinite Dimension網(wǎng)絡(luò)公開度




書目名稱Stochastic Optimal Control in Infinite Dimension網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Stochastic Optimal Control in Infinite Dimension被引頻次




書目名稱Stochastic Optimal Control in Infinite Dimension被引頻次學(xué)科排名




書目名稱Stochastic Optimal Control in Infinite Dimension年度引用




書目名稱Stochastic Optimal Control in Infinite Dimension年度引用學(xué)科排名




書目名稱Stochastic Optimal Control in Infinite Dimension讀者反饋




書目名稱Stochastic Optimal Control in Infinite Dimension讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:03:40 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:12:28 | 只看該作者
Mild Solutions in Spaces of Continuous Functions, Hilbert spaces through a . which was first introduced in [147, 340] and then improved and developed in various subsequent papers like [89, 90, 306, 307, 317] and later [105, 107, 301, 309, 310, 431–434].
地板
發(fā)表于 2025-3-22 05:33:48 | 只看該作者
Preliminaries on Stochastic Calculus in Infinite Dimension,We recall some basic notions of measure theory and give a short introduction to random variables and the theory of the Bochner integral.
5#
發(fā)表于 2025-3-22 08:54:44 | 只看該作者
Optimal Control Problems and Examples,In this chapter we discuss the connection between the study of infinite-dimensional stochastic optimal control problems and that of second-order Hamilton–Jacobi–Bellman (HJB) equations in Hilbert spaces.
6#
發(fā)表于 2025-3-22 13:48:59 | 只看該作者
Viscosity Solutions,This chapter is devoted to the theory of viscosity solutions of Hamilton–Jacobi–Bellman equations in Hilbert spaces.
7#
發(fā)表于 2025-3-22 19:02:25 | 只看該作者
8#
發(fā)表于 2025-3-22 23:10:16 | 只看該作者
HJB Equations Through Backward Stochastic Differential Equations,This last chapter of the book completes the picture of the main methods used to study second-order HJB equations in Hilbert spaces and related optimal control problems by presenting a survey of results that can be achieved with the techniques of Backward SDEs in infinite dimension.
9#
發(fā)表于 2025-3-23 01:27:49 | 只看該作者
Giorgio Fabbri,Fausto Gozzi,Andrzej ?wi?chProvides a systematic survey of the main available results, with proofs and references.Gives a complete presentation of the theory of regular and viscosity solutions of second-order HJB equations in i
10#
發(fā)表于 2025-3-23 09:17:58 | 只看該作者
978-3-319-85053-5Springer International Publishing AG 2017
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 14:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
三门峡市| 额敏县| 吉安市| 九江市| 靖江市| 呈贡县| 武威市| 厦门市| 乐陵市| 高尔夫| 磐安县| 光泽县| 泽州县| 昌平区| 崇文区| 克东县| 常德市| 安义县| 视频| 吉隆县| 瓦房店市| 成安县| 松滋市| 永胜县| 浦城县| 林州市| 班戈县| 安吉县| 鹤壁市| 香港 | 儋州市| 嘉善县| 郯城县| 鹤山市| 绿春县| 行唐县| 四子王旗| 乐昌市| 乡城县| 遵义市| 德保县|