找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Stochastic Games And Related Topics; In Honor of Professo T. E. S. Raghavan,T. S. Ferguson,O. J. Vrieze Book 1991 Kluwer Academic Publisher

[復(fù)制鏈接]
樓主: dejected
11#
發(fā)表于 2025-3-23 13:25:55 | 只看該作者
A Brief Summary of the Papers in the Volumelayer II observes .(.) from .(.), and claims .(.) ≥ .(.) but this time .(.) must be larger than .(.). The game may be repeated indefinitely with the players reversing roles and the new call always being greater than the previous call. The value of this game is proved to be.
12#
發(fā)表于 2025-3-23 16:16:03 | 只看該作者
13#
發(fā)表于 2025-3-23 19:37:22 | 只看該作者
Symmetric Stochastic Games of Resource Extraction: The Existence of Non-Randomized Stationary Equili . x .. x..; the function .. is the instantaneous reward function for player .. Lastly, β is the discount factor the players employ. Periodically, the players observe a state . ∈ . and pick actions .. ∈ ..(.), . = 1,2
14#
發(fā)表于 2025-3-23 22:46:03 | 只看該作者
15#
發(fā)表于 2025-3-24 02:35:40 | 只看該作者
A Brief Summary of the Papers in the Volumeie and the other must detect the lie. For example, player I first observes a random variable .( 1), having a continuous distribution function .(.). He then chooses .(.) and claims that .(.) ≥ .(.). Player n, must then challenge or accept player I’s claim. If he challenges, player I wins if and only
16#
發(fā)表于 2025-3-24 09:01:42 | 只看該作者
17#
發(fā)表于 2025-3-24 11:49:30 | 只看該作者
On the Algorithm of Pollatschek and Avi-ltzhakall our algorithm the Modified Newton’s Method and demonstrate that it always converges to the value-vector of the stochastic game, and from an arbitrary starting point. The step-size in our method is selected according to the well-known Armijo’s Rule.
18#
發(fā)表于 2025-3-24 16:02:18 | 只看該作者
19#
發(fā)表于 2025-3-24 19:01:42 | 只看該作者
20#
發(fā)表于 2025-3-25 02:41:30 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 05:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
甘泉县| 米林县| 成武县| 岐山县| 彭水| 中山市| 竹溪县| 淄博市| 津南区| 龙游县| 苍山县| 栾川县| 浦县| 余庆县| 遵化市| 开阳县| 万州区| 海口市| 平舆县| 神农架林区| 汤阴县| 景东| 武功县| 苍南县| 广平县| 民权县| 塔城市| 会同县| 罗平县| 康平县| 琼结县| 桦川县| 叙永县| 大厂| 驻马店市| 常宁市| 荆门市| 泸定县| 手游| 鄂托克前旗| 平江县|