找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Stochastic Equations and Differential Geometry; Ya. I. Belopolskaya,Yu. L. Dalecky Book 1990 Springer Science+Business Media Dordrecht 199

[復(fù)制鏈接]
樓主: 存貨清單
11#
發(fā)表于 2025-3-23 12:15:57 | 只看該作者
Ya. I. Belopolskaya,Yu. L. Daleckyhat it means to be a part of the imagined community of America. Religious factors ground any story about what America is, and now we will burrow deeper into the connection of religion and narrative and point out that the relationship is complex. Jonathan Z. Smith has argued that there are two ways t
12#
發(fā)表于 2025-3-23 16:05:15 | 只看該作者
13#
發(fā)表于 2025-3-23 20:50:16 | 只看該作者
Stochastic Equations on Smooth Manifolds,chastic equation is compatible with this structure. Finally, we shall construct formal differential extensions of stochastic equations and prove that the solutions of the equations on the considered manifold are smooth with respect to the initial values under some assumptions.
14#
發(fā)表于 2025-3-23 23:57:35 | 只看該作者
Diffusion Processes on Lie Groups and Principal Fibre Bundles,ere . is a principal fibre bundle over a certain manifold . with . the structural group of . : . → .. The most interesting in those two cases are equations with invariant (under actions of the group .) coefficients.
15#
發(fā)表于 2025-3-24 04:06:09 | 只看該作者
Stochastic Equations in Banach Spaces,hastic analysis, or stochastic calculus, in Banach spaces with smooth norms. We have tried to make the exposition detailed enough and adjusted to our future needs while dealing with smooth Banach manifolds.
16#
發(fā)表于 2025-3-24 09:01:13 | 只看該作者
17#
發(fā)表于 2025-3-24 13:53:16 | 只看該作者
18#
發(fā)表于 2025-3-24 15:08:59 | 只看該作者
19#
發(fā)表于 2025-3-24 20:02:20 | 只看該作者
20#
發(fā)表于 2025-3-25 02:11:28 | 只看該作者
Stochastic Equations in Banach Spaces,hastic analysis, or stochastic calculus, in Banach spaces with smooth norms. We have tried to make the exposition detailed enough and adjusted to our future needs while dealing with smooth Banach manifolds.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 18:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阳泉市| 利津县| 突泉县| 通辽市| 伽师县| 封丘县| 布尔津县| 关岭| 汝州市| 吴江市| 太仆寺旗| 尼玛县| 大姚县| 株洲县| 徐汇区| 岳普湖县| 什邡市| 龙海市| 共和县| 卫辉市| 湟中县| 兰溪市| 剑阁县| 娱乐| 洞头县| 平利县| 永济市| 靖西县| 南汇区| 长沙市| 疏附县| 岢岚县| 桦甸市| 诏安县| 化德县| 永春县| 莒南县| 雅安市| 宕昌县| 达日县| 祁连县|