找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Stochastic Differential Inclusions and Applications; Micha? Kisielewicz Book 2013 Springer Science+Business Media New York 2013 Feynman-Ka

[復(fù)制鏈接]
樓主: quick-relievers
11#
發(fā)表于 2025-3-23 12:58:30 | 只看該作者
Set-Valued Stochastic Integrals,stochastic integrals defined, like Aumann integrals, as images of subtrajectory integrals of set-valued stochastic processes by some linear mappings with values in .. The set-valued stochastic integrals defined in Sect. 2 are understood as certain set-valued random variables.
12#
發(fā)表于 2025-3-23 15:25:14 | 只看該作者
13#
發(fā)表于 2025-3-23 21:48:58 | 只看該作者
14#
發(fā)表于 2025-3-24 01:10:16 | 只看該作者
Viability Theory,The results of this chapter deal with the existence of viable solutions for stochastic functional and backward inclusions. Weak compactness of sets of all viable weak solutions of stochastic functional inclusions is also considered.
15#
發(fā)表于 2025-3-24 06:23:22 | 只看該作者
16#
發(fā)表于 2025-3-24 07:14:51 | 只看該作者
978-1-4899-8951-2Springer Science+Business Media New York 2013
17#
發(fā)表于 2025-3-24 14:07:30 | 只看該作者
18#
發(fā)表于 2025-3-24 15:23:42 | 只看該作者
Springer Optimization and Its Applicationshttp://image.papertrans.cn/s/image/877907.jpg
19#
發(fā)表于 2025-3-24 21:34:14 | 只看該作者
20#
發(fā)表于 2025-3-25 00:32:43 | 只看該作者
Partial Differential Inclusions,orems and existence and representation theorems for such partial differential inclusions follow. It will be proved that solutions of initial and boundary value problems for partial differential inclusions can be described by weak solutions of stochastic functional inclusions .(., .), as considered in Chap. 4.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 04:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阳朔县| 垫江县| 浏阳市| 剑阁县| 乃东县| 连南| 长治县| 喀喇沁旗| 广灵县| 碌曲县| 奇台县| 鄯善县| 措勤县| 尚志市| 措勤县| 綦江县| 山东| 泸西县| 鹤壁市| 屏东市| 蒲城县| 镇康县| 甘南县| 托克逊县| 峨山| 佛学| 五指山市| 锦屏县| 余干县| 化隆| 天门市| 祁阳县| 灵山县| 固阳县| 仙游县| 海门市| 东乡县| 峡江县| 许昌市| 东乡族自治县| 深州市|