找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Stochastic Decomposition; A Statistical Method Julia L. Higle,Suvrajeet Sen Book 1996 Springer Science+Business Media Dordrecht 1996 Mathem

[復(fù)制鏈接]
查看: 47422|回復(fù): 41
樓主
發(fā)表于 2025-3-21 17:21:10 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Stochastic Decomposition
副標(biāo)題A Statistical Method
編輯Julia L. Higle,Suvrajeet Sen
視頻videohttp://file.papertrans.cn/878/877894/877894.mp4
叢書名稱Nonconvex Optimization and Its Applications
圖書封面Titlebook: Stochastic Decomposition; A Statistical Method Julia L. Higle,Suvrajeet Sen Book 1996 Springer Science+Business Media Dordrecht 1996 Mathem
描述Motivation Stochastic Linear Programming with recourse represents one of the more widely applicable models for incorporating uncertainty within in which the SLP optimization models. There are several arenas model is appropriate, and such models have found applications in air- line yield management, capacity planning, electric power generation planning, financial planning, logistics, telecommunications network planning, and many more. In some of these applications, modelers represent uncertainty in terms of only a few seenarios and formulate a large scale linear program which is then solved using LP software. However, there are many applications, such as the telecommunications planning problem discussed in this book, where a handful of seenarios do not capture variability well enough to provide a reasonable model of the actual decision-making problem. Problems of this type easily exceed the capabilities of LP software by several orders of magnitude. Their solution requires the use of algorithmic methods that exploit the structure of the SLP model in a manner that will accommodate large scale applications.
出版日期Book 1996
關(guān)鍵詞Mathematica; Optimization algorithm; Optimization algorithms; STATISTICA; Simulation; algorithms; communic
版次1
doihttps://doi.org/10.1007/978-1-4615-4115-8
isbn_softcover978-1-4613-6845-8
isbn_ebook978-1-4615-4115-8Series ISSN 1571-568X
issn_series 1571-568X
copyrightSpringer Science+Business Media Dordrecht 1996
The information of publication is updating

書目名稱Stochastic Decomposition影響因子(影響力)




書目名稱Stochastic Decomposition影響因子(影響力)學(xué)科排名




書目名稱Stochastic Decomposition網(wǎng)絡(luò)公開度




書目名稱Stochastic Decomposition網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Stochastic Decomposition被引頻次




書目名稱Stochastic Decomposition被引頻次學(xué)科排名




書目名稱Stochastic Decomposition年度引用




書目名稱Stochastic Decomposition年度引用學(xué)科排名




書目名稱Stochastic Decomposition讀者反饋




書目名稱Stochastic Decomposition讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:54:21 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:38:04 | 只看該作者
Stabilizing Stochastic Decomposition,tes the impact of the procedure for updating the cutting planes. Specifically, while this mechanism ensures that the objective function approximation is asymptotically accurate near the iterates, it also ensures that any given cutting plane will eventually become redundant.
地板
發(fā)表于 2025-3-22 07:15:01 | 只看該作者
Book 1996ch the SLP optimization models. There are several arenas model is appropriate, and such models have found applications in air- line yield management, capacity planning, electric power generation planning, financial planning, logistics, telecommunications network planning, and many more. In some of t
5#
發(fā)表于 2025-3-22 10:01:52 | 只看該作者
6#
發(fā)表于 2025-3-22 13:59:03 | 只看該作者
Stopping Rules for Stochastic Decomposition,any practical computer implementation requires effective stopping criteria. It is important to recognize that when using sampled data to solve a problem, standard deterministic stopping rules are inadequate. We will develop specialized optimality tests that take advantage of the information generated during the course of the SD algorithm.
7#
發(fā)表于 2025-3-22 17:57:50 | 只看該作者
8#
發(fā)表于 2025-3-22 23:25:50 | 只看該作者
9#
發(fā)表于 2025-3-23 05:19:14 | 只看該作者
10#
發(fā)表于 2025-3-23 08:21:37 | 只看該作者
Stabilizing Stochastic Decomposition,proximations developed by an SD algorithm are considerably less accurate than the sample mean function, the SD approximations are sufficiently accurate to ensure asymptotic optimality for a subsequence of iterates. Moreover, the manner in which the objective function approximation is updated as addi
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 23:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
民权县| 汝阳县| 峨眉山市| 离岛区| 灵川县| 砚山县| 新乡市| 安远县| 台山市| 瑞金市| 温州市| 武川县| 防城港市| 阿拉尔市| 富民县| 江阴市| 瑞安市| 西和县| 余庆县| 南华县| 彭州市| 延长县| 光泽县| 兴仁县| 池州市| 定西市| 临沭县| 五家渠市| 阜城县| 松溪县| 吉安市| 清镇市| 福贡县| 白城市| 济阳县| 十堰市| 巴马| 札达县| 楚雄市| 浦北县| 芜湖县|