找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Sternstunden der Mathematik; Jost-Hinrich Eschenburg Book 2017 Springer Fachmedien Wiesbaden GmbH 2017 Pythagoras.Gau?.Galois.Riemann.Bomb

[復(fù)制鏈接]
樓主: 加冕
21#
發(fā)表于 2025-3-25 05:41:22 | 只看該作者
22#
發(fā)表于 2025-3-25 07:41:51 | 只看該作者
23#
發(fā)表于 2025-3-25 15:06:12 | 只看該作者
24#
發(fā)表于 2025-3-25 17:09:36 | 只看該作者
,G?del: Ist die Mathematik axiomatisierbar? (1931),efolgert werden k?nnen? Im Unterricht an den Hochschulen scheint es fast so: Die reellen Zahlen zum Beispiel werden durch Axiome definiert, die die Rechenregeln, den Umgang mit ”<“ und ”>“ sowie die Vollst?ndigkeit nach au?en (kein Ende) und innen (keine Lücken) beschreiben. Die S?tze der Analysis w
25#
發(fā)表于 2025-3-25 23:59:39 | 只看該作者
26#
發(fā)表于 2025-3-26 01:56:23 | 只看該作者
,Klingenberg: Krümmung und Gestalt (1961),tensystems überschritten, musste man ihre Konzepte, insbesondere den Begriff der Krümmung neu verstehen. Eine der ersten Resultate dieser neuen ”Riemannschen Geometrie im Gro?en“ war der Sph?rensatz von Marcel Berger und Wilhelm Klingenberg (1961): Eine einfach zusammenh?ngende kompakte Mannigfaltig
27#
發(fā)表于 2025-3-26 07:18:25 | 只看該作者
,Shechtman: Unm?gliche Kristalle (8.4.1982),ehordnungen k?nnen nur 2, 3, 4 oder 6 sein. Aber 1982 beobachtete Dan Shechtman ”unm?gliche“ Kristalle mit Drehordnung 5, wofür er 2011 den Chemie-Nobelpreis erhielt. Es waren kristallartige Strukturen, die nicht-periodisch sind und dennoch lokal überall gleich aussehen, sogenannte Quasikristalle. M
28#
發(fā)表于 2025-3-26 10:26:59 | 只看該作者
29#
發(fā)表于 2025-3-26 15:54:20 | 只看該作者
30#
發(fā)表于 2025-3-26 20:27:52 | 只看該作者
,Theodoros: Wurzeln und Selbst?hnlichkeit (?399),Verh?ltnis zu Eins. Der Prozess ist periodisch, was sich in der Selbst?hnlichkeit der Figuren ausdrückt. Diese Eigenschaft wurde von Theodoros bis √17 beobachtet; erst über zwei Jahrtausende sp?ter hat Lagrange sie allgemein bewiesen. Wir geben ein sehr einfaches Argument dafür.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-21 00:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
满洲里市| 吕梁市| 托里县| 绥阳县| 双牌县| 铁力市| 长宁区| 泾源县| 邛崃市| 库伦旗| 集贤县| 乌审旗| 什邡市| 兴安盟| 盐津县| 石首市| 长泰县| 普兰店市| 屏东市| 文昌市| 疏勒县| 渝中区| 乾安县| 宁强县| 洛浦县| 始兴县| 当雄县| 沿河| 泰和县| 互助| 祥云县| 阿图什市| 湘阴县| 铁岭县| 淮安市| 马边| 民和| 屏南县| 汝城县| 恩平市| 枞阳县|