找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Steinberg Groups for Jordan Pairs; Ottmar Loos,Erhard Neher Book 2019 Springer Science+Business Media, LLC, part of Springer Nature 2019 S

[復(fù)制鏈接]
查看: 47019|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:11:20 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Steinberg Groups for Jordan Pairs
編輯Ottmar Loos,Erhard Neher
視頻videohttp://file.papertrans.cn/878/877139/877139.mp4
概述Develops a unified theory of Steinberg groups, independent of matrix representations, based on the theory of Jordan pairs and the theory of 3-graded locally finite root systems.Simplifies the case-by-
叢書(shū)名稱Progress in Mathematics
圖書(shū)封面Titlebook: Steinberg Groups for Jordan Pairs;  Ottmar Loos,Erhard Neher Book 2019 Springer Science+Business Media, LLC, part of Springer Nature 2019 S
描述The present monograph develops a unified theory of Steinberg groups, independent of matrix representations, based on the theory of Jordan pairs and the theory of 3-graded locally finite root systems..The development of this approach occurs over six chapters, progressing from groups with commutator relations and their Steinberg groups, then on to Jordan pairs, 3-graded locally finite root systems, and groups associated with Jordan pairs graded by root systems, before exploring the volume‘s main focus: the definition of the Steinberg group of a root graded Jordan pair by a small set of relations, and its central closedness. Several original concepts, such as the notions of Jordan graphs and Weyl elements, provide readers with the necessary tools from combinatorics and group theory..Steinberg Groups for Jordan Pairs.?is ideal for PhD students and researchers in the fields of elementary groups, Steinberg groups, Jordanalgebras, and Jordan pairs. By adopting a unified approach, anybody interested in this area who seeks an alternative to case-by-case arguments and explicit matrix calculations will find this book essential..
出版日期Book 2019
關(guān)鍵詞Steinberg groups; Jordan pairs; Weyl group; Elementary groups; Jordan algebras; Idempotents; Graph theory
版次1
doihttps://doi.org/10.1007/978-1-0716-0264-5
isbn_ebook978-1-0716-0264-5Series ISSN 0743-1643 Series E-ISSN 2296-505X
issn_series 0743-1643
copyrightSpringer Science+Business Media, LLC, part of Springer Nature 2019
The information of publication is updating

書(shū)目名稱Steinberg Groups for Jordan Pairs影響因子(影響力)




書(shū)目名稱Steinberg Groups for Jordan Pairs影響因子(影響力)學(xué)科排名




書(shū)目名稱Steinberg Groups for Jordan Pairs網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Steinberg Groups for Jordan Pairs網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Steinberg Groups for Jordan Pairs被引頻次




書(shū)目名稱Steinberg Groups for Jordan Pairs被引頻次學(xué)科排名




書(shū)目名稱Steinberg Groups for Jordan Pairs年度引用




書(shū)目名稱Steinberg Groups for Jordan Pairs年度引用學(xué)科排名




書(shū)目名稱Steinberg Groups for Jordan Pairs讀者反饋




書(shū)目名稱Steinberg Groups for Jordan Pairs讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:29:51 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:24:56 | 只看該作者
Groups With Commutator Relations,he usual sense and with a view towards later applications, we base at least part of the theory on “sets in free abelian groups”, that is, pairs (.) consisting of a free abelian group . and a subset . of . generating . and containing 0. With an obvious definition of morphisms, they form a category ..
地板
發(fā)表于 2025-3-22 05:18:51 | 只看該作者
5#
發(fā)表于 2025-3-22 12:47:49 | 只看該作者
0743-1643 ybody interested in this area who seeks an alternative to case-by-case arguments and explicit matrix calculations will find this book essential..978-1-0716-0264-5Series ISSN 0743-1643 Series E-ISSN 2296-505X
6#
發(fā)表于 2025-3-22 14:39:44 | 只看該作者
7#
發(fā)表于 2025-3-22 18:10:00 | 只看該作者
Groups With Commutator Relations,he usual sense and with a view towards later applications, we base at least part of the theory on “sets in free abelian groups”, that is, pairs (.) consisting of a free abelian group . and a subset . of . generating . and containing 0. With an obvious definition of morphisms, they form a category ..
8#
發(fā)表于 2025-3-22 22:56:19 | 只看該作者
Groups Associated With Jordan Pairs, we give a leisurely introduction to Jordan pairs in 6. In particular, we present the most important examples, and introduce fundamental notions, such as quasi-invertible pairs and the inner automorphisms defined by them, idempotents and their Peirce decompositions.
9#
發(fā)表于 2025-3-23 02:17:16 | 只看該作者
Springer Science+Business Media, LLC, part of Springer Nature 2019
10#
發(fā)表于 2025-3-23 07:33:36 | 只看該作者
Steinberg Groups for Jordan Pairs978-1-0716-0264-5Series ISSN 0743-1643 Series E-ISSN 2296-505X
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 00:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
江门市| 古田县| 新巴尔虎左旗| 平阳县| 印江| 广南县| 西平县| 商水县| 休宁县| 阳谷县| 寿宁县| 铁岭县| 湟中县| 重庆市| 崇阳县| 乐清市| 香河县| 巫山县| 集贤县| 台东市| 汉寿县| 静乐县| 武胜县| 德惠市| 泌阳县| 乐至县| 永修县| 宣恩县| 尼玛县| 黎城县| 望江县| 丁青县| 台湾省| 卢湾区| 西平县| 康平县| 鄂托克旗| 泗阳县| 余姚市| 泾源县| 西乌|