找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Statistical Language and Speech Processing; 4th International Co Pavel Král,Carlos Martín-Vide Conference proceedings 2016 Springer Interna

[復(fù)制鏈接]
樓主: inroad
31#
發(fā)表于 2025-3-26 21:35:59 | 只看該作者
Articulatory Gesture Rich Representation Learning of Phonological Units in Low Resource Settingslower dimensional manifold embedded richly inside the higher-dimensional spectral features like MFCC and PLP. Linguistic or phonetic units of speech can be broken down to a legal inventory of articulatory gestures shared across several phonemes based on their manner of articulation. We intend to dis
32#
發(fā)表于 2025-3-27 02:27:13 | 只看該作者
Estimating the Severity of Parkinson’s Disease Using Voiced Ratio and Nonlinear Parameterstween acoustic features and the UPDRS severity. The applied acoustic features were the followings: voicing ratio (VR), nonlinear recurrence: the normalized recurrence probability density entropy (.) and fractal scaling: the scaling exponent (.). High diversity is found according to the type of speec
33#
發(fā)表于 2025-3-27 05:38:08 | 只看該作者
Optimal Feature Set and Minimal Training Size for Pronunciation Adaptation in TTSe, the TTS?quality drops when phoneme sequences generated by this converter are inconsistent with those labeled in the speech corpus on which the TTS system is built, or when a given expressivity is desired. To solve this problem, the present work aims at automatically adapting generated pronunciati
34#
發(fā)表于 2025-3-27 11:15:58 | 只看該作者
35#
發(fā)表于 2025-3-27 16:10:50 | 只看該作者
Class n-Gram Models for Very Large Vocabulary Speech Recognition of Finnish and Estonianeral millions of words using automatically derived classes. To evaluate the models on Finnish and an Estonian broadcast news speech recognition task, we modify Aalto University’s LVCSR decoder to operate with the class n-grams and very large vocabularies. Linear interpolation of a standard n-gram mo
36#
發(fā)表于 2025-3-27 20:26:21 | 只看該作者
Combining Syntactic and Acoustic Features for Prosodic Boundary Detection in Russianing the two groups of features yields the efficiency of 0.90, recall of 0.85 and precision of 0.99. It preserves the high recall provided by textual information and the high precision achieved using acoustic information. This is the best published result for Russian.
37#
發(fā)表于 2025-3-27 22:12:02 | 只看該作者
38#
發(fā)表于 2025-3-28 02:52:55 | 只看該作者
39#
發(fā)表于 2025-3-28 09:31:12 | 只看該作者
40#
發(fā)表于 2025-3-28 11:04:06 | 只看該作者
Delexicalized and Minimally Supervised Parsing on Universal Dependenciesage attachment score of our parser is slightly lower then the delexicalized transfer parser, however, it performs better for languages from less resourced language families (non-Indo-European) and is therefore suitable for those, for which the treebanks often do not exist.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 11:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
碌曲县| 中江县| 清徐县| 日喀则市| 沅江市| 北票市| 鄄城县| 扶沟县| 西林县| 保康县| 闵行区| 武冈市| 化德县| 桦南县| 广灵县| 德格县| 安义县| 和平区| 剑河县| 汝南县| 奎屯市| 县级市| 平度市| 张家口市| 贵港市| 和平区| 龙游县| 昭觉县| 文安县| 青田县| 屯昌县| 阆中市| 竹北市| 宁晋县| 崇明县| 金山区| 鹤岗市| 浦东新区| 锦州市| 宝山区| 交城县|