找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Statistical Field Theory for Neural Networks; Moritz Helias,David Dahmen Book 2020 Springer Nature Switzerland AG 2020 Statistical physics

[復(fù)制鏈接]
查看: 33956|回復(fù): 51
樓主
發(fā)表于 2025-3-21 19:13:34 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Statistical Field Theory for Neural Networks
編輯Moritz Helias,David Dahmen
視頻videohttp://file.papertrans.cn/877/876416/876416.mp4
概述Provides the first self-contained introduction to field theory for neuronal networks.Presents the main concepts from field theory that are relevant for network dynamics, including diagrammatic techniq
叢書名稱Lecture Notes in Physics
圖書封面Titlebook: Statistical Field Theory for Neural Networks;  Moritz Helias,David Dahmen Book 2020 Springer Nature Switzerland AG 2020 Statistical physics
描述.This book presents a self-contained introduction to techniques from field theory applied to stochastic and collective dynamics in neuronal networks. These powerful analytical techniques, which are well established in other fields of physics, are the basis of current developments and offer solutions to pressing open problems in theoretical neuroscience and also machine learning. They enable a systematic and quantitative understanding of the dynamics in recurrent and stochastic neuronal networks. ..This book is intended for physicists, mathematicians, and computer scientists and it is designed for self-study by researchers who want to enter the field or as the main text for a one semester course at advanced undergraduate or graduate level. The theoretical concepts presented in this book are systematically developed from the very beginning, which only requires basic knowledge of analysis and linear algebra..
出版日期Book 2020
關(guān)鍵詞Statistical physics; Neuronal networks; Dynamic mean-field theory; Diagrammatic techniques; Chaotic netw
版次1
doihttps://doi.org/10.1007/978-3-030-46444-8
isbn_softcover978-3-030-46443-1
isbn_ebook978-3-030-46444-8Series ISSN 0075-8450 Series E-ISSN 1616-6361
issn_series 0075-8450
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

書目名稱Statistical Field Theory for Neural Networks影響因子(影響力)




書目名稱Statistical Field Theory for Neural Networks影響因子(影響力)學(xué)科排名




書目名稱Statistical Field Theory for Neural Networks網(wǎng)絡(luò)公開度




書目名稱Statistical Field Theory for Neural Networks網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Statistical Field Theory for Neural Networks被引頻次




書目名稱Statistical Field Theory for Neural Networks被引頻次學(xué)科排名




書目名稱Statistical Field Theory for Neural Networks年度引用




書目名稱Statistical Field Theory for Neural Networks年度引用學(xué)科排名




書目名稱Statistical Field Theory for Neural Networks讀者反饋




書目名稱Statistical Field Theory for Neural Networks讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:48:27 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:11:57 | 只看該作者
Moritz Helias,David DahmenProvides the first self-contained introduction to field theory for neuronal networks.Presents the main concepts from field theory that are relevant for network dynamics, including diagrammatic techniq
地板
發(fā)表于 2025-3-22 08:32:33 | 只看該作者
978-3-030-46443-1Springer Nature Switzerland AG 2020
5#
發(fā)表于 2025-3-22 10:47:58 | 只看該作者
6#
發(fā)表于 2025-3-22 15:21:24 | 只看該作者
7#
發(fā)表于 2025-3-22 20:25:08 | 只看該作者
8#
發(fā)表于 2025-3-22 22:16:47 | 只看該作者
Probabilities, Moments, Cumulants,the cumulant-generating function. It, correspondingly, introduces moments and cumulants and their mutual connections. These definitions are key to the subsequent concepts, such as the perturbative computation of statistics.
9#
發(fā)表于 2025-3-23 02:04:29 | 只看該作者
Loopwise Expansion in the MSRDJ Formalism,al, introduced in Chap. .. This will allow us to obtain self-consistent solutions for the mean of the process including fluctuation corrections. It also enables the efficient computation of higher order cumulants of the process by decomposing them into vertex functions, as introduced in Chap. ..
10#
發(fā)表于 2025-3-23 08:08:32 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-28 05:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
吉隆县| 梨树县| 镇雄县| 垦利县| 临漳县| 梁山县| 安乡县| 阿荣旗| 建始县| 曲阳县| 茂名市| 玉屏| 东莞市| 城步| 安阳市| 禹州市| 荔波县| 大悟县| 嘉义市| 亳州市| 斗六市| 永春县| 兴城市| 专栏| 张家川| 张家界市| 安义县| 云龙县| 青海省| 义乌市| 醴陵市| 正安县| 澄江县| 长武县| 托克逊县| 高青县| 云和县| 株洲县| 大余县| 楚雄市| 湟中县|