找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Statistical Estimation; Asymptotic Theory I. A. Ibragimov,R. Z. Has’minskii Book 1981 Springer Science+Business Media New York 1981 Asympto

[復制鏈接]
樓主: 空隙
11#
發(fā)表于 2025-3-23 13:25:26 | 只看該作者
Independent Identically Distributed Observations. Densities with Jumps,The estimation theory given in Chapters II and III utilizes to a large extent the regularity of the experiments under consideration. Obviously this is the most important case, however, it is not difficult to give examples of very interesting problems where the regularity condition is not fulfilled.
12#
發(fā)表于 2025-3-23 16:57:20 | 只看該作者
13#
發(fā)表于 2025-3-23 19:51:48 | 只看該作者
Statistical Estimation978-1-4899-0027-2Series ISSN 0172-4568 Series E-ISSN 2197-439X
14#
發(fā)表于 2025-3-24 00:55:39 | 只看該作者
Basic Notation,rems, subsections, or formulas appearing in another chapter, the number of this chapter is indicated first. When a reference to a theorem and a formula presented in Appendices I or II is given, the triple enumeration is used; for example, (1.A.12) indicates a reference to formula 12 in Appendix I.
15#
發(fā)表于 2025-3-24 03:04:45 | 只看該作者
Introduction,over the subject completely and the choice of material is to a great extent based on the authors’ interests. In particular, only the theoretical mathematical aspect of the subject is considered, which may be viewed to some extent as a shortcoming of this book.
16#
發(fā)表于 2025-3-24 06:35:14 | 只看該作者
Some Applications to Nonparametric Estimation,aces in situations when these are not determined by specifying a finite number of parameters. In this chapter we shall show by means of several examples how the ideas of parametric estimation presented in Chapters I–III can be applied to problems of this kind.
17#
發(fā)表于 2025-3-24 11:05:31 | 只看該作者
18#
發(fā)表于 2025-3-24 18:16:43 | 只看該作者
19#
發(fā)表于 2025-3-24 21:42:30 | 只看該作者
20#
發(fā)表于 2025-3-25 01:37:29 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 05:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
马山县| 济阳县| 灵台县| 新宾| 富川| 阜新市| 清镇市| 金昌市| 盐亭县| 枝江市| 姜堰市| 天祝| 十堰市| 宜丰县| 东乌| 青岛市| 禄丰县| 阳新县| 民勤县| 武陟县| 青铜峡市| 陆丰市| 二连浩特市| 无为县| 成都市| 阿巴嘎旗| 马边| 侯马市| 儋州市| 翼城县| 绥棱县| 朔州市| 南昌市| 钟山县| 清原| 盐池县| 平利县| 济南市| 宝丰县| 瓮安县| 万全县|