找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Stable Homotopy Theory; Lectures delivered a J. Frank Adams Book 19641st edition Springer-Verlag Berlin Heidelberg 1964 Division.Homologica

[復(fù)制鏈接]
樓主: Baleful
21#
發(fā)表于 2025-3-25 04:40:13 | 只看該作者
22#
發(fā)表于 2025-3-25 09:07:35 | 只看該作者
Book 19641st edition(‘IT"r(SO)) = 2m where m 1s exactly this denominator. status of conJectuI‘e ~ No proof in sight. Q9njecture Eo If I‘ = 8k or 8k + 1, so that ‘IT"r(SO) = Z2‘ then J(‘IT"r(SO)) = 2 , 2 status of conjecture: Probably provable, but this is work in progl‘ess.
23#
發(fā)表于 2025-3-25 13:41:52 | 只看該作者
24#
發(fā)表于 2025-3-25 18:52:50 | 只看該作者
25#
發(fā)表于 2025-3-25 23:10:50 | 只看該作者
26#
發(fā)表于 2025-3-26 04:10:01 | 只看該作者
Book 19641st editioneory where we strongly suspect that there is something systematic going on, but where we are not yet sure what the system is. The first question concerns the stable J-homomorphism. I recall that this is a homomorphism J: ~ (SQ) ~ ~S = ~ + (Sn), n large. r r r n It is of interest to the differential
27#
發(fā)表于 2025-3-26 05:20:26 | 只看該作者
Primary operations,uch as the celebrated Steenrod square. I recall that this is a homomorphism . defined for each pair (X,Y) and for all non-negative integers i and n. (H. is to be interpreted as singular cohomology.) The Steenrod square enjoys the following properties:
28#
發(fā)表于 2025-3-26 09:18:29 | 只看該作者
Primary operations,ow that a proposed geometric construction is impossible, you have to find a topological invariant which shows the impossibility. Among topological invariants we meet first the homology and cohomology groups, with their additive and multiplicative structure. Afte that we meet cohomology operations, s
29#
發(fā)表于 2025-3-26 15:32:03 | 只看該作者
30#
發(fā)表于 2025-3-26 19:12:24 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-30 04:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
杭锦后旗| 修武县| 商水县| 拉孜县| 武功县| 中江县| 博爱县| 桐柏县| 盐池县| 当阳市| 成武县| 杭锦后旗| 武夷山市| 黄骅市| 宁乡县| 昭平县| 米林县| 溆浦县| 松潘县| 玛纳斯县| 二连浩特市| 汉沽区| 闵行区| 长乐市| 潜山县| 鄢陵县| 弋阳县| 莱西市| 沁水县| 彩票| 长武县| 阳朔县| 龙陵县| 乐山市| 洞口县| 金湖县| 梅河口市| 东台市| 陇南市| 金沙县| 宝兴县|