找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Stable Homotopy Around the Arf-Kervaire Invariant; Victor P. Snaith Book 2009 Birkh?user Basel 2009 Adams operation.Algebraic topology.Arf

[復制鏈接]
查看: 44654|回復: 43
樓主
發(fā)表于 2025-3-21 16:11:23 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Stable Homotopy Around the Arf-Kervaire Invariant
編輯Victor P. Snaith
視頻videohttp://file.papertrans.cn/876/875439/875439.mp4
概述Introduction of the new “upper triangular technology” method.Detailed application of upper triangular technology to operations in algebraic K-theory and to the Arf-Kervaire invariant problem..An accou
叢書名稱Progress in Mathematics
圖書封面Titlebook: Stable Homotopy Around the Arf-Kervaire Invariant;  Victor P. Snaith Book 2009 Birkh?user Basel 2009 Adams operation.Algebraic topology.Arf
描述Were I to take an iron gun, And ?re it o? towards the sun; I grant ‘twould reach its mark at last, But not till many years had passed. But should that bullet change its force, And to the planets take its course, ‘Twould never reach the nearest star, Because it is so very far. from FACTS by Lewis Carroll [55] Let me begin by describing the two purposes which prompted me to write this monograph. This is a book about algebraic topology and more especially about homotopy theory. Since the inception of algebraic topology [217] the study of homotopy classes of continuous maps between spheres has enjoyed a very exc- n n tional, central role. As is well known, for homotopy classes of maps f : S ?? S with n? 1 the sole homotopy invariant is the degree, which characterises the homotopy class completely. The search for a continuous map between spheres of di?erent dimensions and not homotopic to the constant map had to wait for its resolution until the remarkable paper of Heinz Hopf [111]. In retrospect, ?nding 3 an example was rather easy because there is a canonical quotient map from S to 3 1 1 2 theorbitspaceofthe freecircleactionS /S =CP = S .
出版日期Book 2009
關鍵詞Adams operation; Algebraic topology; Arf-Kervaire invariant; Homotopy; K-theory; algebraic K-theory; homot
版次1
doihttps://doi.org/10.1007/978-3-7643-9904-7
isbn_ebook978-3-7643-9904-7Series ISSN 0743-1643 Series E-ISSN 2296-505X
issn_series 0743-1643
copyrightBirkh?user Basel 2009
The information of publication is updating

書目名稱Stable Homotopy Around the Arf-Kervaire Invariant影響因子(影響力)




書目名稱Stable Homotopy Around the Arf-Kervaire Invariant影響因子(影響力)學科排名




書目名稱Stable Homotopy Around the Arf-Kervaire Invariant網絡公開度




書目名稱Stable Homotopy Around the Arf-Kervaire Invariant網絡公開度學科排名




書目名稱Stable Homotopy Around the Arf-Kervaire Invariant被引頻次




書目名稱Stable Homotopy Around the Arf-Kervaire Invariant被引頻次學科排名




書目名稱Stable Homotopy Around the Arf-Kervaire Invariant年度引用




書目名稱Stable Homotopy Around the Arf-Kervaire Invariant年度引用學科排名




書目名稱Stable Homotopy Around the Arf-Kervaire Invariant讀者反饋




書目名稱Stable Homotopy Around the Arf-Kervaire Invariant讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 22:19:07 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:03:51 | 只看該作者
地板
發(fā)表于 2025-3-22 05:22:56 | 只看該作者
5#
發(fā)表于 2025-3-22 09:08:18 | 只看該作者
6#
發(fā)表于 2025-3-22 13:27:29 | 只看該作者
7#
發(fā)表于 2025-3-22 19:48:50 | 只看該作者
8#
發(fā)表于 2025-3-22 21:26:30 | 只看該作者
examen toch toeslaat, kun je jezelf technieken leren om de baas te worden over je eigen angst. In dit boek wordt besproken hoe je in die situatie effectief met angst kunt omgaan en wat je moet doen als je gezakt bent.Leven met rijexamenangst verschijnt in de reeks Van A tot ggZ.
9#
發(fā)表于 2025-3-23 02:43:36 | 只看該作者
10#
發(fā)表于 2025-3-23 07:12:35 | 只看該作者
ijdens het examen toch toeslaat, kun je jezelf technieken leren om de baas te worden over je eigen angst. In dit boek wordt besproken hoe je in die situatie effectief met angst kunt omgaan en wat je moet doen als je gezakt bent.Leven met rijexamenangst verschijnt in de reeks Van A tot ggZ.978-90-313-4345-4978-90-313-9255-1
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-7 14:33
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
永吉县| 红桥区| 古蔺县| 北碚区| 辉县市| 芜湖市| 六盘水市| 巨野县| 犍为县| 淳化县| 成安县| 灵丘县| 罗城| 会东县| 红安县| 阜阳市| 六枝特区| 交口县| 铁岭市| 陆河县| 白山市| 开江县| 漳平市| 泸西县| 襄汾县| 康平县| 新安县| 晋州市| 凌海市| 苏尼特左旗| 湄潭县| 加查县| 桃园县| 循化| 丰城市| 若尔盖县| 梅州市| 化州市| 菏泽市| 交城县| 宁强县|