找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Spline Functions; Proceedings of an In Klaus B?hmer,Günter Meinardus,Walter Schempp Conference proceedings 1976 Springer-Verlag Berlin Heid

[復(fù)制鏈接]
樓主: morphology
51#
發(fā)表于 2025-3-30 09:58:12 | 只看該作者
he constraints could be non-convex, and could even be several nonconnected feasible regions..An algorithm is developed which consists of two phases, a “minimization phase” which finds a local constrained minimum and a “tunnelling phase” whose starting point is the local minimum just found, and where
52#
發(fā)表于 2025-3-30 13:37:27 | 只看該作者
53#
發(fā)表于 2025-3-30 17:14:15 | 只看該作者
On the relations between finite differences and derivatives of cardinal spline functions, s. denotes the k-th derivative of s (k=0,1,2,...,m?1). Using the shift operator E, we represent this relation in a simple form, involving the exponential Euler polynomials. The results are applied to cardinal spline interpolation.
54#
發(fā)表于 2025-3-30 23:10:46 | 只看該作者
55#
發(fā)表于 2025-3-31 01:52:47 | 只看該作者
Discrete polynomial spline approximation methods,fined as piecewise polynomials where the ties between each polynomial piece involve continuity of differences instead of derivatives. We study discrete analogs of local spline approximations, least squares spline approximations, and even order spline interpolation at knots. Error bounds involving di
56#
發(fā)表于 2025-3-31 07:34:34 | 只看該作者
On the relations between finite differences and derivatives of cardinal spline functions,ionship between the 2m+2 quantities s(i+x), s(i+1+x),...,s(i+m+x), s.(i+y), s.(i+1+y),...,s.(i+m+y), where x,y ∈ [0,1], i=0,±1,±2,... s ∈ S. and where s. denotes the k-th derivative of s (k=0,1,2,...,m?1). Using the shift operator E, we represent this relation in a simple form, involving the exponen
57#
發(fā)表于 2025-3-31 10:36:36 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 09:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
元朗区| 深水埗区| 会理县| 五常市| 寻甸| 南京市| 望城县| 沁源县| 夹江县| 淮北市| 辽中县| 台中县| 正阳县| 维西| 韶山市| 剑河县| 乌兰浩特市| 柳江县| 聂拉木县| 区。| 宾阳县| 共和县| 五莲县| 白河县| 土默特右旗| 盘锦市| 四会市| 峨边| 齐齐哈尔市| 石城县| 长泰县| 即墨市| 渝中区| 迭部县| 原平市| 即墨市| 郓城县| 孝感市| 华容县| 宜阳县| 石台县|