找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Spinoza’s Epistemology through a Geometrical Lens; Matthew Homan Book 2021 The Editor(s) (if applicable) and The Author(s), under exclusiv

[復(fù)制鏈接]
樓主: 法庭
11#
發(fā)表于 2025-3-23 10:00:40 | 只看該作者
12#
發(fā)表于 2025-3-23 17:28:03 | 只看該作者
978-3-030-76741-9The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
13#
發(fā)表于 2025-3-23 18:12:57 | 只看該作者
Introduction,knowledge, via an interrogation of the ontology of mathematical entities. I provide relevant background regarding the “mathematization of nature” in the seventeenth century, contrasting different forms of mathematical realism and antirealism, and canvassing the respective views of Descartes, Galileo
14#
發(fā)表于 2025-3-23 23:02:16 | 只看該作者
15#
發(fā)表于 2025-3-24 05:50:14 | 只看該作者
16#
發(fā)表于 2025-3-24 06:53:36 | 只看該作者
Reason and Imagination in Spinozan Science, I address a number of interpretive issues pertaining to reason, including the nature, origin, and adequacy of common notions. I also address the issue of the adequacy of the findings of Spinozan science raised by the role of the imagination therein. Ultimately, I argue for a hypothetico-deductive i
17#
發(fā)表于 2025-3-24 13:07:54 | 只看該作者
18#
發(fā)表于 2025-3-24 17:59:55 | 只看該作者
,Spinoza’s Notions of Essence, distinguishing between common essences at the level of attribute and infinite mode at one extreme, singular essences at the level of finite individuals at the other extreme, and species essences in the middle (which, I argue, exist only as beings of reason). I also clarify Spinoza’s notions of form
19#
發(fā)表于 2025-3-24 21:06:14 | 只看該作者
Intuitive Knowledge: The Perfection of Reason,f which it is capable. With the help of a geometrical example modeled on, but more suggestive than, Spinoza’s fourth proportional example, I argue for a “method interpretation” of the distinction between reason and intuitive knowledge, according to which they differ only in their respective methods
20#
發(fā)表于 2025-3-25 01:49:53 | 只看該作者
Introduction,he seventeenth century, contrasting different forms of mathematical realism and antirealism, and canvassing the respective views of Descartes, Galileo, Gassendi, and Hobbes as representative of the intellectual landscape. I outline my argument for attributing a geometrical realist position to Spinoza and overview the chapters of the book.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-21 00:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
樟树市| 中超| 杨浦区| 苗栗县| 广河县| 安顺市| 泾源县| 安阳县| 弋阳县| 石林| 乐清市| 孟村| 山西省| 安陆市| 临泽县| 阿尔山市| 宁河县| 南丰县| 敦煌市| 霸州市| 泌阳县| 民和| 绍兴县| 延川县| 寿光市| 雷州市| 张家界市| 彝良县| 乌鲁木齐市| 邹平县| 天全县| 岐山县| 苗栗县| 泾阳县| 洞口县| 安陆市| 利津县| 嘉定区| 沙田区| 桦川县| 衡水市|