找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Spherical Harmonics and Approximations on the Unit Sphere: An Introduction; Kendall Atkinson,Weimin Han Book 2012 Springer-Verlag Berlin H

[復(fù)制鏈接]
樓主: DUCT
11#
發(fā)表于 2025-3-23 11:14:03 | 只看該作者
Preliminaries,The study of spherical harmonics has a long history, over 200 years by now. Classical spherical harmonics on the unit sphere of three dimensional Euclidean space can be viewed as extensions of trigonometric functions on the unit circle.
12#
發(fā)表于 2025-3-23 17:52:38 | 只看該作者
Spherical Harmonics,This chapter presents a theory of spherical harmonics from the viewpoint of invariant linear function spaces on the sphere. It is shown that the system of spherical harmonics is the only system of invariant function spaces that is both complete and closed, and cannot be reduced further.
13#
發(fā)表于 2025-3-23 19:38:52 | 只看該作者
Differentiation and Integration over the Sphere,In this chapter, we discuss some properties and formulas for differentiation and integration involving spherical harmonics.
14#
發(fā)表于 2025-3-23 23:53:36 | 只看該作者
Approximation Theory,For functions of a single variable, there is a rich literature on best approximations by ordinary polynomials and by trigonometric polynomials.
15#
發(fā)表于 2025-3-24 03:31:41 | 只看該作者
Applications: Spectral Methods,This chapter begins with two illustrations of the application of the material from the preceding chapters.
16#
發(fā)表于 2025-3-24 10:17:31 | 只看該作者
17#
發(fā)表于 2025-3-24 14:13:23 | 只看該作者
18#
發(fā)表于 2025-3-24 18:55:32 | 只看該作者
Kendall Atkinson,Weimin Hans in this study is outlined in Table 1. The questionnaire was divided up into four parts; in the first part, the indications were specifled. The number of procedures carried out for each indication was requested. The success rate was then established, the total number of complications observed, and
19#
發(fā)表于 2025-3-24 20:18:57 | 只看該作者
20#
發(fā)表于 2025-3-25 03:07:11 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-30 00:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
汉川市| 铁岭县| 通化县| 乌审旗| 莱阳市| 墨玉县| 皮山县| 太仆寺旗| 西乡县| 昭觉县| 广安市| 遂昌县| 平陆县| 安达市| 万载县| 麻城市| 崇信县| 南召县| 赤城县| 噶尔县| 涿鹿县| 永丰县| 行唐县| 自贡市| 闽侯县| 师宗县| 荆州市| 托克逊县| 牡丹江市| 台山市| 建始县| 淳安县| 宜兴市| 安宁市| 宝山区| 绥滨县| 莱州市| 洛宁县| 农安县| 富裕县| 泗阳县|