找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Spherical Harmonics and Approximations on the Unit Sphere: An Introduction; Kendall Atkinson,Weimin Han Book 2012 Springer-Verlag Berlin H

[復(fù)制鏈接]
樓主: DUCT
11#
發(fā)表于 2025-3-23 11:14:03 | 只看該作者
Preliminaries,The study of spherical harmonics has a long history, over 200 years by now. Classical spherical harmonics on the unit sphere of three dimensional Euclidean space can be viewed as extensions of trigonometric functions on the unit circle.
12#
發(fā)表于 2025-3-23 17:52:38 | 只看該作者
Spherical Harmonics,This chapter presents a theory of spherical harmonics from the viewpoint of invariant linear function spaces on the sphere. It is shown that the system of spherical harmonics is the only system of invariant function spaces that is both complete and closed, and cannot be reduced further.
13#
發(fā)表于 2025-3-23 19:38:52 | 只看該作者
Differentiation and Integration over the Sphere,In this chapter, we discuss some properties and formulas for differentiation and integration involving spherical harmonics.
14#
發(fā)表于 2025-3-23 23:53:36 | 只看該作者
Approximation Theory,For functions of a single variable, there is a rich literature on best approximations by ordinary polynomials and by trigonometric polynomials.
15#
發(fā)表于 2025-3-24 03:31:41 | 只看該作者
Applications: Spectral Methods,This chapter begins with two illustrations of the application of the material from the preceding chapters.
16#
發(fā)表于 2025-3-24 10:17:31 | 只看該作者
17#
發(fā)表于 2025-3-24 14:13:23 | 只看該作者
18#
發(fā)表于 2025-3-24 18:55:32 | 只看該作者
Kendall Atkinson,Weimin Hans in this study is outlined in Table 1. The questionnaire was divided up into four parts; in the first part, the indications were specifled. The number of procedures carried out for each indication was requested. The success rate was then established, the total number of complications observed, and
19#
發(fā)表于 2025-3-24 20:18:57 | 只看該作者
20#
發(fā)表于 2025-3-25 03:07:11 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-30 06:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
多伦县| 宁城县| 绍兴市| 平安县| 沈丘县| 景东| 丰原市| 常宁市| 鞍山市| 罗源县| 淮南市| 永年县| 长治县| 康马县| 涟水县| 天柱县| 洪泽县| 莫力| 青冈县| 绿春县| 元朗区| 云阳县| 枝江市| 鹰潭市| 徐闻县| 临海市| 永吉县| 甘德县| 平乐县| 平远县| 永寿县| 唐河县| 留坝县| 龙江县| 富蕴县| 枣强县| 若羌县| 仁化县| 治多县| 越西县| 岫岩|