找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Spectral Methods in Infinite-Dimensional Analysis; Y. M. Berezansky,Y. G. Kondratiev Book 1995 Springer Science+Business Media Dordrecht 1

[復制鏈接]
樓主: 涌出
21#
發(fā)表于 2025-3-25 07:19:47 | 只看該作者
Application of the Theory of Expansions to Harmonic Analysis,rems of Bochner’s type on positive definite functions, representations of moment sequences, and so on). The main idea of this construction can be explained most simply if we take a positive definite function of a single variable as an example.
22#
發(fā)表于 2025-3-25 11:13:10 | 只看該作者
Infinite-Dimensional Elliptic Differential operators of the Second Order,e used (though often on a formal level) as operators of energy of systems with infinitely many degrees of freedom; in the theory of random processes where diffusion processes with infinite-dimensional phase spaces are constructed with the help of operators of this sort; and, finally, the investigati
23#
發(fā)表于 2025-3-25 13:11:16 | 只看該作者
24#
發(fā)表于 2025-3-25 17:41:35 | 只看該作者
25#
發(fā)表于 2025-3-25 20:12:35 | 只看該作者
26#
發(fā)表于 2025-3-26 02:41:32 | 只看該作者
Generalized Functions of Infinitely Many Variables. Gaussian Measures,e of the Lebesgue type is absent in ?. and, thus, the choice of a space ..(?.) is ambiguous. Therefore, there is no natural way of identifying an ordinary function with a generalized one, and this yields difficulties.
27#
發(fā)表于 2025-3-26 04:55:12 | 只看該作者
Rigged Spaces, (negative) vectors, and the “zero” space .. setting the duality. These constructions are now well known and frequently used. Nevertheless, in Section 1, we give the necessary information with proofs (sometimes concise).
28#
發(fā)表于 2025-3-26 09:13:42 | 只看該作者
scrutinized by a newly mechanized verse science. By the turn of the century, metrical verse was being subjected to a rigorous measurement regime, underwritten by a robust materialism in physiology and psychology, in coordination with burgeoning technologies of sound. Experimentalists assisted in the
29#
發(fā)表于 2025-3-26 16:42:55 | 只看該作者
30#
發(fā)表于 2025-3-26 19:50:35 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 00:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
甘孜县| 鱼台县| 綦江县| 磐安县| 蓬莱市| 宜昌市| 商都县| 沈阳市| 黄浦区| 大田县| 元氏县| 若尔盖县| 思茅市| 宾阳县| 西峡县| 五常市| 琼结县| 宝清县| 五指山市| 宜州市| 浙江省| 封开县| 睢宁县| 信丰县| 仁布县| 海淀区| 四平市| 鹿邑县| 靖州| 荆门市| 陕西省| 玉田县| 莲花县| 历史| 凉城县| 东光县| 靖安县| 蚌埠市| 垣曲县| 休宁县| 台东县|