找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Spectral Methods in Infinite-Dimensional Analysis; Y. M. Berezansky,Y. G. Kondratiev Book 1995 Springer Science+Business Media Dordrecht 1

[復制鏈接]
樓主: 涌出
21#
發(fā)表于 2025-3-25 07:19:47 | 只看該作者
Application of the Theory of Expansions to Harmonic Analysis,rems of Bochner’s type on positive definite functions, representations of moment sequences, and so on). The main idea of this construction can be explained most simply if we take a positive definite function of a single variable as an example.
22#
發(fā)表于 2025-3-25 11:13:10 | 只看該作者
Infinite-Dimensional Elliptic Differential operators of the Second Order,e used (though often on a formal level) as operators of energy of systems with infinitely many degrees of freedom; in the theory of random processes where diffusion processes with infinite-dimensional phase spaces are constructed with the help of operators of this sort; and, finally, the investigati
23#
發(fā)表于 2025-3-25 13:11:16 | 只看該作者
24#
發(fā)表于 2025-3-25 17:41:35 | 只看該作者
25#
發(fā)表于 2025-3-25 20:12:35 | 只看該作者
26#
發(fā)表于 2025-3-26 02:41:32 | 只看該作者
Generalized Functions of Infinitely Many Variables. Gaussian Measures,e of the Lebesgue type is absent in ?. and, thus, the choice of a space ..(?.) is ambiguous. Therefore, there is no natural way of identifying an ordinary function with a generalized one, and this yields difficulties.
27#
發(fā)表于 2025-3-26 04:55:12 | 只看該作者
Rigged Spaces, (negative) vectors, and the “zero” space .. setting the duality. These constructions are now well known and frequently used. Nevertheless, in Section 1, we give the necessary information with proofs (sometimes concise).
28#
發(fā)表于 2025-3-26 09:13:42 | 只看該作者
scrutinized by a newly mechanized verse science. By the turn of the century, metrical verse was being subjected to a rigorous measurement regime, underwritten by a robust materialism in physiology and psychology, in coordination with burgeoning technologies of sound. Experimentalists assisted in the
29#
發(fā)表于 2025-3-26 16:42:55 | 只看該作者
30#
發(fā)表于 2025-3-26 19:50:35 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 00:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
分宜县| 全椒县| 布尔津县| 师宗县| 凌源市| 深水埗区| 天峨县| 靖西县| 富宁县| 南汇区| 吐鲁番市| 焉耆| 龙州县| 科技| 岑溪市| 宣恩县| 栾城县| 白朗县| 舒城县| 绵竹市| 平乡县| 营口市| 威远县| 澜沧| 三河市| 平江县| 万州区| 玛纳斯县| 东乌| 德令哈市| 扎囊县| 雅安市| 平邑县| 抚松县| 新沂市| 江孜县| 婺源县| 麦盖提县| 桃源县| 双流县| 太保市|