找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Spectral Geometry and Inverse Scattering Theory; Huaian Diao,Hongyu Liu Book 2023 The Editor(s) (if applicable) and The Author(s), under e

[復(fù)制鏈接]
樓主: Exaltation
31#
發(fā)表于 2025-3-26 22:13:30 | 只看該作者
32#
發(fā)表于 2025-3-27 01:45:48 | 只看該作者
33#
發(fā)表于 2025-3-27 08:49:08 | 只看該作者
34#
發(fā)表于 2025-3-27 12:23:28 | 只看該作者
Stability for Inverse Electromagnetic Obstacle Scattering Problems,In this chapter, we deal with the stability issue for the inverse obstacle problem associated with the electromagnetic scattering. We follow the treatment in [.] on a quantitative path argument. We are concerned with the electromagnetic scattering problem, in the time-harmonic case, which is governed by the Maxwell systemas follows.
35#
發(fā)表于 2025-3-27 13:58:14 | 只看該作者
,Geometric Structures of Helmholtz’s Transmission Eigenfunctions with General Transmission ConditionLet . be a bounded Lipschitz domain in ., .?=?2, 3, and .?∈?.(.) and .?∈?.(.) be possibly complex-valued functions. Consider the following interior transmission eigenvalue problem with a conductive boundary condition for ., .?∈?.(.)
36#
發(fā)表于 2025-3-27 19:18:15 | 只看該作者
37#
發(fā)表于 2025-3-27 23:28:25 | 只看該作者
Huaian Diao,Hongyu LiuComprehensive treatment of inverse scattering problems; associates with acoustic, electromagnetic & elastic waves.Includes discussions on the geometrical inverse shape problems by minimal measurements
38#
發(fā)表于 2025-3-28 04:09:50 | 只看該作者
http://image.papertrans.cn/s/image/873826.jpg
39#
發(fā)表于 2025-3-28 09:21:26 | 只看該作者
40#
發(fā)表于 2025-3-28 13:10:55 | 只看該作者
Path Argument for Inverse Acoustic and Electromagnetic Obstacle Scattering Problems,nd . to represent the incident, scattered and total field, respectively, where .?=?.?+?. and . with . being the incident direction and .?>?0 being the wave number. Let . be an impenetrable obstacle, where . is a general compact set in . with an open connect complement ..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 12:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
永宁县| 龙州县| 永寿县| 阜宁县| 通化市| 岳西县| 济阳县| 随州市| 拜泉县| 淅川县| 安乡县| 彰武县| 定兴县| 白城市| 北京市| 桑日县| 温宿县| 香格里拉县| 陇南市| 香港 | 京山县| 金乡县| 太和县| 乌鲁木齐县| 阳曲县| 垣曲县| 秦皇岛市| 保康县| 南岸区| 吉木萨尔县| 潢川县| 德阳市| 图木舒克市| 永春县| 湄潭县| 达拉特旗| 陇南市| 贡嘎县| 临湘市| 宁海县| 荥阳市|