找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Spectral Geometry and Inverse Scattering Theory; Huaian Diao,Hongyu Liu Book 2023 The Editor(s) (if applicable) and The Author(s), under e

[復制鏈接]
樓主: Exaltation
31#
發(fā)表于 2025-3-26 22:13:30 | 只看該作者
32#
發(fā)表于 2025-3-27 01:45:48 | 只看該作者
33#
發(fā)表于 2025-3-27 08:49:08 | 只看該作者
34#
發(fā)表于 2025-3-27 12:23:28 | 只看該作者
Stability for Inverse Electromagnetic Obstacle Scattering Problems,In this chapter, we deal with the stability issue for the inverse obstacle problem associated with the electromagnetic scattering. We follow the treatment in [.] on a quantitative path argument. We are concerned with the electromagnetic scattering problem, in the time-harmonic case, which is governed by the Maxwell systemas follows.
35#
發(fā)表于 2025-3-27 13:58:14 | 只看該作者
,Geometric Structures of Helmholtz’s Transmission Eigenfunctions with General Transmission ConditionLet . be a bounded Lipschitz domain in ., .?=?2, 3, and .?∈?.(.) and .?∈?.(.) be possibly complex-valued functions. Consider the following interior transmission eigenvalue problem with a conductive boundary condition for ., .?∈?.(.)
36#
發(fā)表于 2025-3-27 19:18:15 | 只看該作者
37#
發(fā)表于 2025-3-27 23:28:25 | 只看該作者
Huaian Diao,Hongyu LiuComprehensive treatment of inverse scattering problems; associates with acoustic, electromagnetic & elastic waves.Includes discussions on the geometrical inverse shape problems by minimal measurements
38#
發(fā)表于 2025-3-28 04:09:50 | 只看該作者
http://image.papertrans.cn/s/image/873826.jpg
39#
發(fā)表于 2025-3-28 09:21:26 | 只看該作者
40#
發(fā)表于 2025-3-28 13:10:55 | 只看該作者
Path Argument for Inverse Acoustic and Electromagnetic Obstacle Scattering Problems,nd . to represent the incident, scattered and total field, respectively, where .?=?.?+?. and . with . being the incident direction and .?>?0 being the wave number. Let . be an impenetrable obstacle, where . is a general compact set in . with an open connect complement ..
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-6 14:25
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
石首市| 宁阳县| 重庆市| 宕昌县| 精河县| 潍坊市| 龙门县| 黔江区| 大足县| 盘锦市| 鹤庆县| 明水县| 白朗县| 五寨县| 湖南省| 于都县| 阿尔山市| 棋牌| 万年县| 昌吉市| 连江县| 罗甸县| 元江| 安庆市| 万山特区| 彩票| 页游| 库车县| 仪征市| 应城市| 汕尾市| 岳阳县| 临湘市| 资兴市| 嘉荫县| 平舆县| 沾化县| 吉安县| 广水市| 金川县| 尖扎县|