找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Spectral Analysis and Filter Theory in Applied Geophysics; Burkhard Buttkus Book 2000 Springer-Verlag Berlin Heidelberg 2000 Digital data

[復(fù)制鏈接]
樓主: informed
41#
發(fā)表于 2025-3-28 17:25:20 | 只看該作者
42#
發(fā)表于 2025-3-28 20:31:00 | 只看該作者
43#
發(fā)表于 2025-3-28 22:57:58 | 只看該作者
Spectral Representation of Nonperiodic Processesined in most cases. If a function .(.) satisfies the Dirichlet conditions (see chapter 1) within an arbitrary interval and if the integral .converges, i.e., .(.) is an absolutely integrable function, .(.) can then be expressed as the Fourier integral.where.or as
44#
發(fā)表于 2025-3-29 06:29:06 | 只看該作者
Characterization of Random Processes in the Time and Frequency Domainsds. It is not possible to describe such processes analytically. We are thus limited to describing them using statistical parameters. The objective of this is to characterize the process so that it can be analyzed and any alterations caused by transfer systems can be evaluated.
45#
發(fā)表于 2025-3-29 08:29:13 | 只看該作者
Evaluation of Magnetotelluric Survey Datadata. The natural magnetic and electric fields at the surface of the Earth—covering a large range of frequencies—depend on the electrical conductivity in the ground. High-frequency fields are affected by the electrical conductivity of near-surface rocks, while fields with lower frequencies are influenced by deeper layers.
46#
發(fā)表于 2025-3-29 14:24:13 | 只看該作者
Fourier Series Representation of Periodic FunctionsWith few exceptions, periodic functions can be expressed as a Fourier series of sine and cosine functions. If .(.)
47#
發(fā)表于 2025-3-29 18:04:41 | 只看該作者
48#
發(fā)表于 2025-3-29 20:38:40 | 只看該作者
49#
發(fā)表于 2025-3-30 02:36:26 | 只看該作者
z-Transform Representation of Time SeriesIf a function .. is sampled at equidistant intervals Δ. at times . = .Δ., . = …, ?1,0,1,2,…, a discrete sequence of values .(.Δ.) is obtained. To simplify the notation, the values .(.Δ.) are represented by the index notation
50#
發(fā)表于 2025-3-30 04:25:50 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 15:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
江门市| 沽源县| 仙游县| 娱乐| 云霄县| 钟山县| 阿克陶县| 温泉县| 洛川县| 芦溪县| 丰顺县| 团风县| 顺平县| 德令哈市| 东莞市| 公主岭市| 裕民县| 攀枝花市| 沐川县| 招远市| 衡山县| 三穗县| 来安县| 朝阳县| 庆阳市| 广宁县| 东台市| 甘肃省| 苏尼特左旗| 渑池县| 望都县| 长春市| 葫芦岛市| 上杭县| 望江县| 石屏县| 勃利县| 黑水县| 清新县| 灵川县| 达州市|