找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Spectral Action in Noncommutative Geometry; Micha? Eckstein,Bruno Iochum Book 2018 The Author(s) 2018 Spectral triples.Mellin transforms.a

[復制鏈接]
樓主: Twinge
11#
發(fā)表于 2025-3-23 10:04:44 | 只看該作者
Analytic Properties of Spectral Functions, the asymptotic expansion of the corresponding heat trace. We utilise the latter to establish the sought asymptotic expansion of the spectral action at large energies. Finally, we ponder the possibility of obtaining convergent, rather than only asymptotic, formulae for this action.
12#
發(fā)表于 2025-3-23 17:07:38 | 只看該作者
Open Problems,ution to each of these stumbling blocks would advance our understanding of the foundations and implications of the Spectral Action Principle. We therefore cordially invite the Reader to contemplate the list below, both from mathematical and physical perspectives.
13#
發(fā)表于 2025-3-23 18:24:10 | 只看該作者
Fluctuations of the Spectral Action,the meromorphic structure of the fluctuated zeta function and, for regular spectral triples with simple dimension spectra, we provide a few formulae for the noncommutative integrals. Finally, we sketch the method of operator perturbations.
14#
發(fā)表于 2025-3-23 23:59:20 | 只看該作者
15#
發(fā)表于 2025-3-24 04:42:14 | 只看該作者
16#
發(fā)表于 2025-3-24 09:16:35 | 只看該作者
17#
發(fā)表于 2025-3-24 14:07:23 | 只看該作者
Book 2018ld is spelled out in the fifth Chapter. The book concludes with an appendix including some auxiliary tools from geometry and analysis, along with examples of spectral geometries..The book servesboth as a compendium for researchers in the domain of noncommutative geometry and an invitation to mathematical physicists looking for new concepts..
18#
發(fā)表于 2025-3-24 18:02:39 | 只看該作者
19#
發(fā)表于 2025-3-24 20:22:16 | 只看該作者
20#
發(fā)表于 2025-3-25 01:10:40 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-27 08:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
永善县| 土默特左旗| 沂南县| 光泽县| 萨迦县| 沾化县| 聂拉木县| 寿光市| 翁牛特旗| 陵水| 西吉县| 商河县| 泸西县| 库伦旗| 广水市| 莆田市| 托克逊县| 油尖旺区| 湘乡市| 阆中市| 南开区| 桐城市| 巩义市| 章丘市| 巴林左旗| 利津县| 汕尾市| 连南| 东乌珠穆沁旗| 乐东| 化德县| 弥勒县| 崇州市| 英吉沙县| 武义县| 偃师市| 桂平市| 文水县| 沾益县| 彭泽县| 讷河市|