找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Spectra and Normal Forms; Luís Barreira,Claudia Valls Book 2024 The Editor(s) (if applicable) and The Author(s), under exclusive license t

[復(fù)制鏈接]
樓主: CHARY
11#
發(fā)表于 2025-3-23 11:02:57 | 只看該作者
Spectra and Examples,ossible forms of the tempered spectrum and we give explicit examples of all of them. More precisely, for each possible form we describe explicitly a sequence of invertible matrices with that tempered spectrum.
12#
發(fā)表于 2025-3-23 16:02:13 | 只看該作者
Asymptotic Behavior,nonlinear. It turns out that all Lyapunov exponents of the perturbed dynamics still belong to some connected component of the tempered spectrum of the linear dynamics. This result depends strongly on the use of Lyapunov norms, which are also used in other parts of the book.
13#
發(fā)表于 2025-3-23 18:13:19 | 只看該作者
14#
發(fā)表于 2025-3-24 01:56:14 | 只看該作者
15#
發(fā)表于 2025-3-24 04:23:32 | 只看該作者
Asymptotic Behavior,pered spectrum. We also consider the asymptotic behavior of a linear dynamics under exponentially decaying perturbations that can either be linear or nonlinear. It turns out that all Lyapunov exponents of the perturbed dynamics still belong to some connected component of the tempered spectrum of the
16#
發(fā)表于 2025-3-24 06:37:14 | 只看該作者
17#
發(fā)表于 2025-3-24 12:23:58 | 只看該作者
Parameter-Dependent Dynamics,rbation of a linear dynamics and we describe how the tempered spectrum may vary. Then we study the smooth dependence of a normal form on a parameter when the nonlinear perturbation depends smoothly on the parameter.
18#
發(fā)表于 2025-3-24 15:21:58 | 只看該作者
19#
發(fā)表于 2025-3-24 20:07:17 | 只看該作者
Infinite-Dimensional Dynamics,s the description of all possible forms of the tempered spectrum for a sequence of compact linear operators, which leads to new forms of the spectrum. We also consider the construction of normal forms. Finally, we give examples of sequences of compact linear operators for all possible forms of the t
20#
發(fā)表于 2025-3-24 23:35:17 | 只看該作者
Stable and Unstable Foliations,n of a tempered exponential dichotomy. One can also construct a stable foliation, simply by reversing time and so the corresponding details are omitted. The two foliations are crucial for the construction of smooth conjugacies in Chapter 8.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 17:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
蓝田县| 绥化市| 津市市| 葫芦岛市| 榆林市| 正安县| 丹寨县| 泾阳县| 盈江县| 新和县| 黑水县| 金山区| 嵩明县| 永济市| 洞口县| 拜城县| 霍林郭勒市| 德惠市| 长沙市| 日土县| 潼关县| 冕宁县| 涿州市| 桓台县| 东平县| 安远县| 济宁市| 岑巩县| 鹿邑县| 荣昌县| 横山县| 城固县| 秭归县| 蓬安县| 高州市| 安阳市| 沁源县| 宣威市| 浦江县| 玉屏| 衡阳市|