找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Spatial Data and Intelligence; 4th International Co Xiaofeng Meng,Xiang Li,Yafei Li Conference proceedings 2023 The Editor(s) (if applicabl

[復(fù)制鏈接]
樓主: 壓榨機(jī)
11#
發(fā)表于 2025-3-23 10:20:07 | 只看該作者
12#
發(fā)表于 2025-3-23 15:44:50 | 只看該作者
DeepParking: Deep Learning-Based Planning Method for Autonomous Parkingred to be reasonably performed in a very limited space. Moreover, since unstructured parking scenarios are lack of significant common features, creating useful heuristics manually to adapt to changing conditions is a non-trivial task. Therefore, we propose a two-stage scheme, Deep Neural Networks ba
13#
發(fā)表于 2025-3-23 20:05:47 | 只看該作者
Recommendations for Urban Planning Based on Non-motorized Travel Data and Street Comfortn and global warming. Based on this, this paper is dedicated to conducting research on improving the attractiveness of outdoor environmental spaces and improving outdoor thermal comfort. The main work of this paper is first to propose a street comfort model by considering both environmental and clim
14#
發(fā)表于 2025-3-23 23:54:27 | 只看該作者
A Composite Grid Clustering Algorithm Based on?Density and?Balance Degreeof bikes and negatively impact the user experience and the operating costs of bike-sharing companies. To address these challenges, bike-sharing companies can create temporary parking stations or electronic fencing and implement bicycle rebalancing strategies across districts. However, these strategi
15#
發(fā)表于 2025-3-24 03:36:07 | 只看該作者
16#
發(fā)表于 2025-3-24 08:36:12 | 只看該作者
17#
發(fā)表于 2025-3-24 11:54:18 | 只看該作者
18#
發(fā)表于 2025-3-24 14:56:04 | 只看該作者
Ship Classification Based on Trajectories Data and LightGBM Considering Offshore Distance Feature features extracted by the existing ship classification methods are motion features, which ignore the spatial relation between the vessels and the coastline, a Method based on LightGBM (Light Gradient Boosting Machine) for ship classification considering the offshore distance features is proposed. F
19#
發(fā)表于 2025-3-24 19:59:38 | 只看該作者
CDGCN: An Effective and Efficient Algorithm Based on Community Detection for Training Deep and Largeor large scale graphs is trained by full-batch stochastic gradient descent, which causes two problems: over-smoothing and neighborhood expansion, which may lead to loss of model accuracy and high memory and computational overhead. To alleviate these two challenges, we propose CDGCN, a novel GCN algo
20#
發(fā)表于 2025-3-25 01:13:32 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 04:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
巍山| 乐山市| 嘉定区| 田林县| 马鞍山市| 定日县| 临高县| 达尔| 开化县| 周口市| 自贡市| 和平区| 缙云县| 惠安县| 沧州市| 嘉荫县| 西和县| 昌都县| 泾川县| 黄平县| 鹿邑县| 新兴县| 马鞍山市| 平泉县| 安顺市| 南投县| 略阳县| 祁阳县| 葫芦岛市| 泾川县| 新河县| 河池市| 剑河县| 科技| 修武县| 麟游县| 莎车县| 石林| 忻州市| 莆田市| 扎兰屯市|