找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Sparse Signal Processing for Massive MIMO Communications; Zhen Gao,Yikun Mei,Li Qiao Book 2024 Beijing Institute of Technology Press 2024

[復(fù)制鏈接]
查看: 27708|回復(fù): 45
樓主
發(fā)表于 2025-3-21 17:56:35 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Sparse Signal Processing for Massive MIMO Communications
編輯Zhen Gao,Yikun Mei,Li Qiao
視頻videohttp://file.papertrans.cn/874/873414/873414.mp4
概述Is the first book to apply sparse signal processing in wireless communication systems systematically.Describes the physical (PHY) layer algorithm design in detail with considerable open-source codes.G
圖書封面Titlebook: Sparse Signal Processing for Massive MIMO Communications;  Zhen Gao,Yikun Mei,Li Qiao Book 2024 Beijing Institute of Technology Press 2024
描述The book focuses on utilizing sparse signal processing techniques in designing massive MIMO communication systems. As the number of antennas has been increasing rapidly for years, extremely high-dimensional channel matrix and massive user access urge for algorithms with much higher efficiency. This book provides in-depth discussions on compressive sensing techniques and simulates the performance on wireless systems. The easy-to-understand instructions with detailed simulations and open-sourced codes provide convenience for readers such as researchers, engineers, and graduate students in the fields of wireless communications.
出版日期Book 2024
關(guān)鍵詞Massive MIMO; Orthogonal frequency division multiplexing; Wireless channel; Channel estimation; Sparse s
版次1
doihttps://doi.org/10.1007/978-981-99-5394-3
isbn_softcover978-981-99-5396-7
isbn_ebook978-981-99-5394-3
copyrightBeijing Institute of Technology Press 2024
The information of publication is updating

書目名稱Sparse Signal Processing for Massive MIMO Communications影響因子(影響力)




書目名稱Sparse Signal Processing for Massive MIMO Communications影響因子(影響力)學(xué)科排名




書目名稱Sparse Signal Processing for Massive MIMO Communications網(wǎng)絡(luò)公開度




書目名稱Sparse Signal Processing for Massive MIMO Communications網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Sparse Signal Processing for Massive MIMO Communications被引頻次




書目名稱Sparse Signal Processing for Massive MIMO Communications被引頻次學(xué)科排名




書目名稱Sparse Signal Processing for Massive MIMO Communications年度引用




書目名稱Sparse Signal Processing for Massive MIMO Communications年度引用學(xué)科排名




書目名稱Sparse Signal Processing for Massive MIMO Communications讀者反饋




書目名稱Sparse Signal Processing for Massive MIMO Communications讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:18:08 | 只看該作者
Book 2024increasing rapidly for years, extremely high-dimensional channel matrix and massive user access urge for algorithms with much higher efficiency. This book provides in-depth discussions on compressive sensing techniques and simulates the performance on wireless systems. The easy-to-understand instruc
板凳
發(fā)表于 2025-3-22 01:07:38 | 只看該作者
formance on wireless systems. The easy-to-understand instructions with detailed simulations and open-sourced codes provide convenience for readers such as researchers, engineers, and graduate students in the fields of wireless communications.978-981-99-5396-7978-981-99-5394-3
地板
發(fā)表于 2025-3-22 06:04:25 | 只看該作者
Subspace-Based Super-Resolution Sparse Channel Estimation in MIMO-OFDM Systems,ral channel correlation leads to the relatively unchanged sparsity pattern during several OFDM symbols. Taking advantage of these characteristics, the considered scheme outperforms existing state-of-the-art methods, and reduces the pilot overhead through joint signal processing across different antennas.
5#
發(fā)表于 2025-3-22 12:13:57 | 只看該作者
6#
發(fā)表于 2025-3-22 16:20:20 | 只看該作者
7#
發(fā)表于 2025-3-22 19:09:23 | 只看該作者
8#
發(fā)表于 2025-3-22 23:32:01 | 只看該作者
9#
發(fā)表于 2025-3-23 04:16:33 | 只看該作者
Compressive Sensing CSI Acquisition and Feedback in FDD Massive MIMO Systems,e training overhead and pilot design, aiming at accurately estimating and feeding back the downlink CSI with significantly reduced overhead. In particular, a compressive sensing based adaptive CSI acquisition scheme is introduced by exploiting the spatially common sparsity of massive MIMO channels,
10#
發(fā)表于 2025-3-23 09:26:56 | 只看該作者
Compressive Sensing Sparse Channel Estimation in Broadband Millimeter-Wave Massive MIMO Systems,ness, which leads to challenges in channel estimation (CE). Simultaneously, the frequency-selective fading (FSF) characteristic of practical mmWave channels cannot be ignored. Therefore, this chapter introduces a multi-user uplink CE scheme tailored for mmWave massive MIMO systems considering FSF ch
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 18:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大宁县| 黄大仙区| 南部县| 伊宁市| 镇平县| 敦煌市| 织金县| 民勤县| 海伦市| 陆河县| 大厂| 潞城市| 蒙阴县| 西乌珠穆沁旗| 辰溪县| 花莲县| 永仁县| 田林县| 阜南县| 交口县| 平谷区| 金沙县| 孙吴县| 海丰县| 清苑县| 临沧市| 吴江市| 潞西市| 绥中县| 阿拉尔市| 略阳县| 资阳市| 蒲江县| 嘉黎县| 长宁区| 济南市| 金秀| 盘锦市| 集贤县| 偃师市| 高要市|