找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Spaces of Continuous Functions; G.L.M. Groenewegen,A.C.M. van Rooij Book 2016 Atlantis Press and the author(s) 2016 Spaces of Continuous F

[復制鏈接]
樓主: minutia
31#
發(fā)表于 2025-3-26 22:01:12 | 只看該作者
,Yosida’s Representation Theorem,Our main result, as mentioned in the preamble to Chap. ., is Yosida’s Theorem, characterizing the Riesz spaces that are isomorphic to .(.) for some compact Hausdorff space .. At the background we have Alaoglu’s Theorem, giving us the space . we need.
32#
發(fā)表于 2025-3-27 02:39:53 | 只看該作者
,The Stone-?ech Compactification,When dealing with a metric space it is often useful to form its completion. Similarly, it may be useful to embed a topological space . in a compact Hausdorff space, preferably as a dense subset.
33#
發(fā)表于 2025-3-27 06:30:23 | 只看該作者
Evaluations,Let . be a topological space.
34#
發(fā)表于 2025-3-27 12:49:04 | 只看該作者
35#
發(fā)表于 2025-3-27 15:02:05 | 只看該作者
The Riesz Representation Theorem,The integral of a continuous function on . may be viewed as the average value of that function. Sometimes it is desirable to have at one’s disposal a method of averaging functions on . that gives different weights to different parts of the interval.
36#
發(fā)表于 2025-3-27 19:19:47 | 只看該作者
Banach Algebras,For compact ., .(.) is an ordered vector space. Yosida’s Theorem characterizes those ordered vector spaces that are “isomorphic” with a .(.). In this chapter we obtain an analogous result for a multiplication instead of an ordering.
37#
發(fā)表于 2025-3-28 01:59:58 | 只看該作者
38#
發(fā)表于 2025-3-28 05:52:42 | 只看該作者
39#
發(fā)表于 2025-3-28 09:25:07 | 只看該作者
40#
發(fā)表于 2025-3-28 12:39:33 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-22 20:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
凭祥市| 新疆| 白山市| 灌阳县| 泗洪县| 黄陵县| 滨海县| 黄陵县| 长汀县| 长宁县| 庐江县| 南充市| 广宗县| 六盘水市| 来凤县| 武清区| 花垣县| 彰化市| 临邑县| 贡觉县| 奉新县| 彭山县| 宜良县| 小金县| 化隆| 中西区| 五常市| 合肥市| 井冈山市| 汝南县| 八宿县| 贞丰县| 温泉县| 吉林市| 青田县| 永济市| 铁力市| 土默特左旗| 巴彦淖尔市| 台南县| 津南区|