找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Spaces of Continuous Functions; G.L.M. Groenewegen,A.C.M. van Rooij Book 2016 Atlantis Press and the author(s) 2016 Spaces of Continuous F

[復(fù)制鏈接]
樓主: minutia
31#
發(fā)表于 2025-3-26 22:01:12 | 只看該作者
,Yosida’s Representation Theorem,Our main result, as mentioned in the preamble to Chap. ., is Yosida’s Theorem, characterizing the Riesz spaces that are isomorphic to .(.) for some compact Hausdorff space .. At the background we have Alaoglu’s Theorem, giving us the space . we need.
32#
發(fā)表于 2025-3-27 02:39:53 | 只看該作者
,The Stone-?ech Compactification,When dealing with a metric space it is often useful to form its completion. Similarly, it may be useful to embed a topological space . in a compact Hausdorff space, preferably as a dense subset.
33#
發(fā)表于 2025-3-27 06:30:23 | 只看該作者
Evaluations,Let . be a topological space.
34#
發(fā)表于 2025-3-27 12:49:04 | 只看該作者
35#
發(fā)表于 2025-3-27 15:02:05 | 只看該作者
The Riesz Representation Theorem,The integral of a continuous function on . may be viewed as the average value of that function. Sometimes it is desirable to have at one’s disposal a method of averaging functions on . that gives different weights to different parts of the interval.
36#
發(fā)表于 2025-3-27 19:19:47 | 只看該作者
Banach Algebras,For compact ., .(.) is an ordered vector space. Yosida’s Theorem characterizes those ordered vector spaces that are “isomorphic” with a .(.). In this chapter we obtain an analogous result for a multiplication instead of an ordering.
37#
發(fā)表于 2025-3-28 01:59:58 | 只看該作者
38#
發(fā)表于 2025-3-28 05:52:42 | 只看該作者
39#
發(fā)表于 2025-3-28 09:25:07 | 只看該作者
40#
發(fā)表于 2025-3-28 12:39:33 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-22 21:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
前郭尔| 太和县| 西青区| 马龙县| 上栗县| 江阴市| 临漳县| 珲春市| 林口县| 玉龙| 罗平县| 通许县| 宜昌市| 游戏| 罗田县| 丰都县| 勐海县| 龙南县| 自治县| 南乐县| 阳原县| 义马市| 嘉禾县| 友谊县| 卢龙县| 和林格尔县| 项城市| 凉城县| 郓城县| 吴旗县| 石景山区| 漳平市| 峨眉山市| 姜堰市| 芦溪县| 互助| 东山县| 台湾省| 肥东县| 潞城市| 哈尔滨市|