找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Space, Time, and Mechanics; Basic Structures of D. Mayr,G. Süssmann Book 1983 D. Reidel Publishing Company, Dordrecht, Holland 1983 Issac

[復(fù)制鏈接]
樓主: SORB
31#
發(fā)表于 2025-3-26 23:13:43 | 只看該作者
32#
發(fā)表于 2025-3-27 02:31:52 | 只看該作者
The Significance of Physical Invariance Principles for the Measurement of Space - Time Quantities,lmholtz who first attempted to derive the geometrical axioms from postulates describing the possible motions of rigid bodies. Helmholtz’ ideas have been developed further by S. Lie who showed how Euclidean and some other geometries may be characterized by certain groups of differentiable transformat
33#
發(fā)表于 2025-3-27 06:35:21 | 只看該作者
Outline of a Theory of System-Times,acteristics of the world as such but rather as conditions set upon the possibility of human experience. The appearance of non-Euclidean theories underlined the fact that other and further conceptions of space were competing with the Euclidean geometry which Kant held to be the sole viable geometry,
34#
發(fā)表于 2025-3-27 11:49:41 | 只看該作者
Newton AB Omni Naevo Vindicatus (1),s that their historical and systematic impact has been due not only to their outstanding positive achievements, but also to their specific deficiencies. As is well known, Euclid’s geometry, which is oriented upon the Aristotelian Ideal of theory, begins with a series of definitions which are a) insu
35#
發(fā)表于 2025-3-27 14:19:46 | 只看該作者
36#
發(fā)表于 2025-3-27 19:41:08 | 只看該作者
37#
發(fā)表于 2025-3-28 00:59:21 | 只看該作者
The Significance of Physical Invariance Principles for the Measurement of Space - Time Quantities,ions in space. Groups however have not only be considered as mathematical tools useful for geometry, they seemed also to be a link between geometry and physics, between the mathematical theory of space and the real world.
38#
發(fā)表于 2025-3-28 04:51:14 | 只看該作者
39#
發(fā)表于 2025-3-28 09:20:49 | 只看該作者
40#
發(fā)表于 2025-3-28 14:16:09 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 11:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
江口县| 云和县| 理塘县| 阿拉善右旗| 怀远县| 喀喇沁旗| 万全县| 纳雍县| 喀喇沁旗| 兰考县| 且末县| 如东县| 淅川县| 芜湖市| 全南县| 孟州市| 贺州市| 麻江县| 无极县| 丹凤县| 甘谷县| 德庆县| 孟州市| 济阳县| 武夷山市| 阳信县| 玉山县| 镇赉县| 柯坪县| 陆川县| 常山县| 湾仔区| 五莲县| 大同县| 夏邑县| 墨江| 福建省| 府谷县| 东台市| 揭阳市| 哈密市|