找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Space, Time, and Mechanics; Basic Structures of D. Mayr,G. Süssmann Book 1983 D. Reidel Publishing Company, Dordrecht, Holland 1983 Issac

[復制鏈接]
樓主: SORB
31#
發(fā)表于 2025-3-26 23:13:43 | 只看該作者
32#
發(fā)表于 2025-3-27 02:31:52 | 只看該作者
The Significance of Physical Invariance Principles for the Measurement of Space - Time Quantities,lmholtz who first attempted to derive the geometrical axioms from postulates describing the possible motions of rigid bodies. Helmholtz’ ideas have been developed further by S. Lie who showed how Euclidean and some other geometries may be characterized by certain groups of differentiable transformat
33#
發(fā)表于 2025-3-27 06:35:21 | 只看該作者
Outline of a Theory of System-Times,acteristics of the world as such but rather as conditions set upon the possibility of human experience. The appearance of non-Euclidean theories underlined the fact that other and further conceptions of space were competing with the Euclidean geometry which Kant held to be the sole viable geometry,
34#
發(fā)表于 2025-3-27 11:49:41 | 只看該作者
Newton AB Omni Naevo Vindicatus (1),s that their historical and systematic impact has been due not only to their outstanding positive achievements, but also to their specific deficiencies. As is well known, Euclid’s geometry, which is oriented upon the Aristotelian Ideal of theory, begins with a series of definitions which are a) insu
35#
發(fā)表于 2025-3-27 14:19:46 | 只看該作者
36#
發(fā)表于 2025-3-27 19:41:08 | 只看該作者
37#
發(fā)表于 2025-3-28 00:59:21 | 只看該作者
The Significance of Physical Invariance Principles for the Measurement of Space - Time Quantities,ions in space. Groups however have not only be considered as mathematical tools useful for geometry, they seemed also to be a link between geometry and physics, between the mathematical theory of space and the real world.
38#
發(fā)表于 2025-3-28 04:51:14 | 只看該作者
39#
發(fā)表于 2025-3-28 09:20:49 | 只看該作者
40#
發(fā)表于 2025-3-28 14:16:09 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-6 18:35
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
安达市| 高雄市| 阿鲁科尔沁旗| 青铜峡市| 依兰县| 吴江市| 钟祥市| 海原县| 墨竹工卡县| 铜陵市| 康保县| 安溪县| 乐陵市| 晋江市| 会昌县| 建阳市| 浦江县| 岑溪市| 广宗县| 太康县| 阳原县| 博客| 收藏| 县级市| 汉阴县| 密山市| 溆浦县| 弥渡县| 大荔县| 孟津县| 梁平县| 伽师县| 莫力| 天峨县| 衢州市| 曲阳县| 临洮县| 塔城市| 恭城| 志丹县| 原平市|