找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Solving Higher-Order Equations; From Logic to Progra Christian Prehofer Book 1998 Birkh?user Boston 1998 Hardware.Program Analysis.Theorem

[復(fù)制鏈接]
樓主: Monomania
11#
發(fā)表于 2025-3-23 12:29:50 | 只看該作者
specification and verification of hardware, software, and mathematics. In these applica- tions, higher-order logic provides the necessary level of abstraction for con- cise and natural formulations. The main assets of higher-order logic are quan- tification over functions or predicates and its abst
12#
發(fā)表于 2025-3-23 14:41:18 | 只看該作者
Progress in Theoretical Computer Sciencehttp://image.papertrans.cn/s/image/871782.jpg
13#
發(fā)表于 2025-3-23 20:30:49 | 只看該作者
14#
發(fā)表于 2025-3-24 00:36:16 | 只看該作者
Preview,In this chapter, we informally introduce the main concepts and outline the contributions of this work. Precise definitions are presented in later chapters. We proceed from first-order term rewriting and narrowing to higher-order unification and higher-order narrowing.
15#
發(fā)表于 2025-3-24 03:19:47 | 只看該作者
16#
發(fā)表于 2025-3-24 10:28:14 | 只看該作者
Higher-Order Equational Reasoning,This chapter introduces higher-order unification and term rewriting. First, Section 4.1 reviews a set of transformation rules for full higher-order pre-unification. This is followed by an important special case, higher-order patterns, where unification proceeds almost as in the first-order case.
17#
發(fā)表于 2025-3-24 11:01:14 | 只看該作者
Variations of Higher-Order Narrowing,This chapter discusses alternative approaches for solving higher-order equations by narrowing. Most of them are inspired by the different notions of first-order narrowing. Compared to lazy narrowing, for all of them new problems arise due to the higher-order case. For an overview of the approaches, we refer again to Figure 2.2.
18#
發(fā)表于 2025-3-24 16:00:27 | 只看該作者
978-1-4612-7278-6Birkh?user Boston 1998
19#
發(fā)表于 2025-3-24 19:38:01 | 只看該作者
20#
發(fā)表于 2025-3-25 02:49:58 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-30 10:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乾安县| 乌兰县| 崇文区| 印江| 鄂州市| 德昌县| 成都市| 黄山市| 萝北县| 大城县| 台湾省| 津市市| 阿尔山市| 阜平县| 西乌珠穆沁旗| 禄劝| 嘉义县| 贵溪市| 涟水县| 梁平县| 宁河县| 通许县| 镇原县| 桦南县| 荆门市| 孝昌县| 涪陵区| 定西市| 镇安县| 平阴县| 梁平县| 孟州市| 象州县| 甘泉县| 盈江县| 灵武市| 北京市| 汶川县| 宁南县| 贵州省| 宜君县|