找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Software Reliability Growth Models; David D. Hanagal,Nileema N. Bhalerao Book 2021 The Editor(s) (if applicable) and The Author(s), under

[復(fù)制鏈接]
查看: 28302|回復(fù): 45
樓主
發(fā)表于 2025-3-21 17:13:25 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Software Reliability Growth Models
編輯David D. Hanagal,Nileema N. Bhalerao
視頻videohttp://file.papertrans.cn/872/871015/871015.mp4
概述Discusses the basic concepts of software reliability growth models.Explains different non-homogeneous Poisson process of software reliability models.Presents applications in artificial neural networks
叢書(shū)名稱Infosys Science Foundation Series
圖書(shū)封面Titlebook: Software Reliability Growth Models;  David D. Hanagal,Nileema N. Bhalerao Book 2021 The Editor(s) (if applicable) and The Author(s), under
描述This book presents the basic concepts of software reliability growth models (SRGMs), ranging from fundamental to advanced level. It discusses SRGM based on the non-homogeneous Poisson process (NHPP), which has been a quite successful tool in practical software reliability engineering. These models consider the debugging process as a counting process characterized by its mean value function. Model parameters have been estimated by using either the maximum likelihood method or regression. NHPP SRGMs based on inverse Weibull, generalized inverse Weibull, extended inverse Weibull, generalized extended inverse Weibull, and delayed S-shaped have been focused upon..??.Review of literature on SRGM has been included from the scratch to recent developments, applicable in artificial neural networks, machine learning, artificial intelligence, data-driven approaches, fault-detection, fault-correction processes, and also in random environmental conditions. This book is designed for practitioners and researchers at all levels of competency, and also targets groups who need information on software reliability engineering..
出版日期Book 2021
關(guān)鍵詞hazard rate; mean value function; imperfect debugging; non-homogeneous Poisson process; model selection
版次1
doihttps://doi.org/10.1007/978-981-16-0025-8
isbn_softcover978-981-16-0027-2
isbn_ebook978-981-16-0025-8Series ISSN 2363-6149 Series E-ISSN 2363-6157
issn_series 2363-6149
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

書(shū)目名稱Software Reliability Growth Models影響因子(影響力)




書(shū)目名稱Software Reliability Growth Models影響因子(影響力)學(xué)科排名




書(shū)目名稱Software Reliability Growth Models網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Software Reliability Growth Models網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Software Reliability Growth Models被引頻次




書(shū)目名稱Software Reliability Growth Models被引頻次學(xué)科排名




書(shū)目名稱Software Reliability Growth Models年度引用




書(shū)目名稱Software Reliability Growth Models年度引用學(xué)科排名




書(shū)目名稱Software Reliability Growth Models讀者反饋




書(shū)目名稱Software Reliability Growth Models讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:02:54 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:06:19 | 只看該作者
NHPP Software Reliability Growth Models,This chapter discusses reliability models for the software failure phenomenon based on a non-homogeneous Poisson process (NHPP). Few among the many existing models based on NHPP are discussed, also numerical examples are included to illustrate the results.
地板
發(fā)表于 2025-3-22 07:53:11 | 只看該作者
Generalized Inverse Weibull Software Reliability Growth Model,In this chapter, we discuss finite failure software reliability growth model using generalized inverse Weibull (GIW) distribution. The three parameter GIW distribution, which extends to several distributions and commonly used in lifetime literature, is more flexible than the inverse Weibull distribution.
5#
發(fā)表于 2025-3-22 10:20:53 | 只看該作者
Generalized Extended Inverse Weibull Software Reliability Growth Model,In this chapter, we discuss the generalized extended inverse Weibull (GEIW)?finite failure software reliability growth model which includes both increasing/decreasing nature of the hazard function.
6#
發(fā)表于 2025-3-22 14:34:22 | 只看該作者
7#
發(fā)表于 2025-3-22 18:16:11 | 只看該作者
8#
發(fā)表于 2025-3-22 22:09:03 | 只看該作者
9#
發(fā)表于 2025-3-23 04:35:27 | 只看該作者
Software Reliability Growth Models978-981-16-0025-8Series ISSN 2363-6149 Series E-ISSN 2363-6157
10#
發(fā)表于 2025-3-23 08:20:18 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 03:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
武胜县| 常山县| 海安县| 华蓥市| 富民县| 宁波市| 大城县| 吉木萨尔县| 宁德市| 甘南县| 临猗县| 博罗县| 黎城县| 冷水江市| 依兰县| 剑阁县| 囊谦县| 休宁县| 翁源县| 招远市| 青岛市| 黄石市| 始兴县| 广德县| 开江县| 仙桃市| 化州市| 泗阳县| 启东市| 丰台区| 深泽县| 张家口市| 白玉县| 德州市| 寻甸| 会东县| 怀宁县| 循化| 资阳市| 湘西| 从江县|