找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Soft Computing in Data Science; Third International Azlinah Mohamed,Michael W. Berry,Bee Wah Yap Conference proceedings 2017 Springer Natu

[復制鏈接]
樓主: ODDS
31#
發(fā)表于 2025-3-27 00:35:16 | 只看該作者
Conference proceedings 2017n topical sections on?deep learning and real-time classification; image feature classification and extraction; classification, clustering, visualization; applications of machine learning; data visualization; fuzzy logic; prediction models and e-learning; text and sentiment analytics..
32#
發(fā)表于 2025-3-27 03:52:20 | 只看該作者
Evaluation of Randomized Variable Translation Wavelet Neural Networksusing benchmark data form UCI machine learning datasets were conducted. The experimental results show that RVT-WNN can work on a broad range of applications from the small size up to the large size with comparable performance to other well-known classifiers.
33#
發(fā)表于 2025-3-27 05:42:01 | 只看該作者
34#
發(fā)表于 2025-3-27 10:57:11 | 只看該作者
Conference proceedings 2017nesia, November 27-28, 2017..The 26 revised full papers presented were carefully reviewed and selected from 68 submissions. The papers are organized in topical sections on?deep learning and real-time classification; image feature classification and extraction; classification, clustering, visualizati
35#
發(fā)表于 2025-3-27 15:41:57 | 只看該作者
36#
發(fā)表于 2025-3-27 18:26:46 | 只看該作者
37#
發(fā)表于 2025-3-28 00:10:51 | 只看該作者
Modeling of the Gaussian-Based Component Analysis on the Kernel Space to Extract Face Imageg sets, 90.83% for three training sets, and 92.38% for four training sets on the YALE database. On the CAI-UTM database, the proposed method could classify correctly by 83.75%, 85.57%, and 87.33% for two, three, and four training sets respectively. The comparison results show that the results of the proposed approach outperformed to other methods.
38#
發(fā)表于 2025-3-28 02:34:14 | 只看該作者
39#
發(fā)表于 2025-3-28 08:28:37 | 只看該作者
Evaluation of Randomized Variable Translation Wavelet Neural Networkst learning algorithms have been proposed such as backpropagation and hybrid wavelet-particle swarm optimization. However, most of them are time costly. This paper proposed a new learning mechanism for VT-WNN using random weights. To validate the performance of randomized VT-WNN, several experiments
40#
發(fā)表于 2025-3-28 13:01:44 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 18:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
来宾市| 北碚区| 鄯善县| 崇礼县| 大荔县| 抚远县| 博乐市| 尉氏县| 炉霍县| 容城县| 宜都市| 曲沃县| 寿宁县| 株洲市| 凤凰县| 佛冈县| 黎平县| 天水市| 寿阳县| 陈巴尔虎旗| 玉环县| 诏安县| 淮南市| 商丘市| 余干县| 辽宁省| 平和县| 香河县| 西乡县| 塔城市| 红安县| 资兴市| 沾化县| 德清县| 岳阳市| 兰溪市| 永年县| 米泉市| 赣州市| 桦甸市| 扶风县|