找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Soft Computing in Data Science; Third International Azlinah Mohamed,Michael W. Berry,Bee Wah Yap Conference proceedings 2017 Springer Natu

[復制鏈接]
樓主: ODDS
31#
發(fā)表于 2025-3-27 00:35:16 | 只看該作者
Conference proceedings 2017n topical sections on?deep learning and real-time classification; image feature classification and extraction; classification, clustering, visualization; applications of machine learning; data visualization; fuzzy logic; prediction models and e-learning; text and sentiment analytics..
32#
發(fā)表于 2025-3-27 03:52:20 | 只看該作者
Evaluation of Randomized Variable Translation Wavelet Neural Networksusing benchmark data form UCI machine learning datasets were conducted. The experimental results show that RVT-WNN can work on a broad range of applications from the small size up to the large size with comparable performance to other well-known classifiers.
33#
發(fā)表于 2025-3-27 05:42:01 | 只看該作者
34#
發(fā)表于 2025-3-27 10:57:11 | 只看該作者
Conference proceedings 2017nesia, November 27-28, 2017..The 26 revised full papers presented were carefully reviewed and selected from 68 submissions. The papers are organized in topical sections on?deep learning and real-time classification; image feature classification and extraction; classification, clustering, visualizati
35#
發(fā)表于 2025-3-27 15:41:57 | 只看該作者
36#
發(fā)表于 2025-3-27 18:26:46 | 只看該作者
37#
發(fā)表于 2025-3-28 00:10:51 | 只看該作者
Modeling of the Gaussian-Based Component Analysis on the Kernel Space to Extract Face Imageg sets, 90.83% for three training sets, and 92.38% for four training sets on the YALE database. On the CAI-UTM database, the proposed method could classify correctly by 83.75%, 85.57%, and 87.33% for two, three, and four training sets respectively. The comparison results show that the results of the proposed approach outperformed to other methods.
38#
發(fā)表于 2025-3-28 02:34:14 | 只看該作者
39#
發(fā)表于 2025-3-28 08:28:37 | 只看該作者
Evaluation of Randomized Variable Translation Wavelet Neural Networkst learning algorithms have been proposed such as backpropagation and hybrid wavelet-particle swarm optimization. However, most of them are time costly. This paper proposed a new learning mechanism for VT-WNN using random weights. To validate the performance of randomized VT-WNN, several experiments
40#
發(fā)表于 2025-3-28 13:01:44 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 18:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
磐石市| 建德市| 铜梁县| 瑞丽市| 西吉县| 昆明市| 牟定县| 舟山市| 清新县| 宜昌市| 昌都县| 卢氏县| 四子王旗| 丹东市| 锡林浩特市| 措勤县| 永嘉县| 平阳县| 射阳县| 长宁县| 常宁市| 彰武县| 泊头市| 潼南县| 子长县| 沂源县| 龙里县| 鞍山市| 玉树县| 石林| 阿勒泰市| 四会市| 海门市| 商城县| 镇平县| 和静县| 鄂尔多斯市| 灵寿县| 长武县| 厦门市| 岗巴县|