找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Soft Computing and Fractal Theory for Intelligent Manufacturing; Oscar Castillo,Patricia Melin Book 2003 Springer-Verlag Berlin Heidelberg

[復(fù)制鏈接]
樓主: ARGOT
41#
發(fā)表于 2025-3-28 15:46:45 | 只看該作者
Type-2 Fuzzy Logic, type-2 fuzzy sets. We can say that type-2 fuzzy logic is a generalization of conventional fuzzy logic (type-1) in the sense that uncertainty is not only limited to the linguistic variables but also is present in the definition of the membership functions.
42#
發(fā)表于 2025-3-28 19:42:24 | 只看該作者
Unsupervised Learning Neural Networks,ome detail competitive learning networks, Kohonen self-organizing networks, learning vector quantization, and Hopfield networks. We will also show some examples of these networks to illustrate their possible application in solving real-world problems.
43#
發(fā)表于 2025-3-28 23:41:00 | 只看該作者
Adaptive Control of Non-Linear Plants,the parameters of the fuzzy system for control. A specific non-linear plant is used to test the hybrid approach for adaptive control. A particular stepping motor was used as test bed in the experiments. The results of the neuro-fuzzy approach were good, both in accuracy and efficiency.
44#
發(fā)表于 2025-3-29 06:24:21 | 只看該作者
45#
發(fā)表于 2025-3-29 08:32:50 | 只看該作者
Type-1 Fuzzy Logic,pe-2 fuzzy sets as well as their operations will be discussed in the next chapter. For this reason, in this chapter we will focus only on type-1 fuzzy logic. Since research on fuzzy set theory has been underway for over 30 years now, it is practically impossible to cover all aspects of current devel
46#
發(fā)表于 2025-3-29 14:00:13 | 只看該作者
Type-2 Fuzzy Logic,s a set in which we also have uncertainty about the membership function. Of course, type-2 fuzzy systems consist of fuzzy if-then rules, which contain type-2 fuzzy sets. We can say that type-2 fuzzy logic is a generalization of conventional fuzzy logic (type-1) in the sense that uncertainty is not o
47#
發(fā)表于 2025-3-29 17:57:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 03:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鄄城县| 柳江县| 玛沁县| 台南市| 金阳县| 贵港市| 龙岩市| 桦甸市| 兴隆县| 赤壁市| 韩城市| 永康市| 遵义市| 米脂县| 元氏县| 鄂伦春自治旗| 新乡县| 秦安县| 桦南县| 吴川市| 班戈县| 宣化县| 隆尧县| 太谷县| 屏山县| 梁平县| 玉林市| 丹东市| 城步| 肃北| 临武县| 珠海市| 襄樊市| 乐东| 横峰县| 曲阳县| 泰兴市| 灌阳县| 吴旗县| 桦甸市| 巴东县|