找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Social Networking and Computational Intelligence; Proceedings of SCI-2 Rajesh Kumar Shukla,Jitendra Agrawal,K. K. Shukla Conference proceed

[復(fù)制鏈接]
樓主: Motion
41#
發(fā)表于 2025-3-28 17:56:16 | 只看該作者
An Efficient Honey Bee Approach for Load Adjusting in Cloud Environmenterms of CPU time, execution time and waiting time. The examination of these three parameters demonstrates that the proposed algorithm requires less CPU time, less execution time and less waiting time than existing algorithm, hence it shows better performance and less energy consumption than the exis
42#
發(fā)表于 2025-3-28 21:56:25 | 只看該作者
Development and Design Strategies of Evidence Collection Framework in Cloud Environmentf issues and challenges are remaining to address in this domain. Some major research domains are architectures, data collection and analysis, anti-forensic, incident first responders, roles and responsibilities, legal, standards, and some learning issues. In our research work, we mainly focus on the
43#
發(fā)表于 2025-3-28 23:00:58 | 只看該作者
A Survey on Cloud Federation Architecture and Challengesecture to which every participating cloud provider must comply. In nutshell, Federation of Clouds opens a domain of infinite possibilities to reshape the existing world of Cloud Computing and Information Technology, in general. It will provide a level playing field for emerging small and medium leve
44#
發(fā)表于 2025-3-29 04:03:31 | 只看該作者
Multi-tier Authentication for Cloud Securitysources for which they had subscribed. Any type of unauthorized access will lead to some type of loss. In this paper, a technique to ensure authorized access by users to cloud resources and services has been proposed, so as to overcome the above-stated issues.
45#
發(fā)表于 2025-3-29 11:12:37 | 只看該作者
46#
發(fā)表于 2025-3-29 15:21:27 | 只看該作者
Features Identification for Filtering Credible Content on Twitter Using Machine Learning Techniques random forest has been observed as the best classifier with accuracy and f1 score as 0.977 and 0.9911, respectively. Furthermore, out of 26 identified features, we have recognized 10 most distinctive features to efficiently distinguish the user tweets in different credibility classes.
47#
發(fā)表于 2025-3-29 16:44:15 | 只看該作者
48#
發(fā)表于 2025-3-29 22:37:17 | 只看該作者
49#
發(fā)表于 2025-3-30 00:52:48 | 只看該作者
50#
發(fā)表于 2025-3-30 06:31:58 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 01:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
根河市| 紫金县| 修水县| 萨迦县| 沙洋县| 洪雅县| 闸北区| 浦江县| 十堰市| 那坡县| 江孜县| 旬邑县| 双流县| 合川市| 邢台市| 酒泉市| 调兵山市| 湟中县| 资源县| 凤凰县| 仙居县| 石渠县| 太湖县| 平谷区| 金溪县| 那曲县| 连江县| 宁南县| 汾西县| 广昌县| 砀山县| 阜宁县| 江油市| 广安市| 始兴县| 比如县| 衡东县| 江陵县| 砀山县| 涞水县| 隆子县|