找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Sobolev Spaces; with Applications to Vladimir Maz‘ya Book 2011Latest edition Springer-Verlag Berlin Heidelberg 2011 46E35, 42B37, 26D10.Sob

[復制鏈接]
樓主: HIV763
21#
發(fā)表于 2025-3-25 04:48:04 | 只看該作者
Approximation in Weighted Sobolev Spaces,the .. seminorm. Now let .??. be an open set and let . be a nontrivial positive Radon measure on .. We will study the space ., defined as the completion of . with respect to the norm . The closure of . in . is denoted .. Note that if .<. then by Sobolev’s inequality the elements in . can be identifi
22#
發(fā)表于 2025-3-25 09:16:05 | 只看該作者
,Spectrum of the Schr?dinger Operator and?the?Dirichlet Laplacian,v’s criterion (16.6.2) involves the so-called negligible sets ., that is, sets of sufficiently small harmonic capacity..In Sects.?18.2–18.3 we show that the constant .. given by (16.6.4) can be replaced by an arbitrary constant ., 0<.<1. We even establish a stronger result allowing negligibility con
23#
發(fā)表于 2025-3-25 12:01:05 | 只看該作者
24#
發(fā)表于 2025-3-25 16:33:10 | 只看該作者
,Conductor and Capacitary Inequalities with?Applications to Sobolev-Type Embeddings,ompact support in .. By . we mean the set {.∈.:|.(.)|>.}, where .>0. We shall use the equivalence relation .~. to denote that the ratio ./. admits upper and lower bounds by positive constants depending only on ., ., ., and ..
25#
發(fā)表于 2025-3-25 20:32:38 | 只看該作者
26#
發(fā)表于 2025-3-26 01:32:09 | 只看該作者
27#
發(fā)表于 2025-3-26 06:27:37 | 只看該作者
28#
發(fā)表于 2025-3-26 12:19:43 | 只看該作者
29#
發(fā)表于 2025-3-26 15:51:32 | 只看該作者
,Spectrum of the Schr?dinger Operator and?the?Dirichlet Laplacian,ay happen that it is satisfied but the spectrum is not discrete (Sect.?18.4). However, we show that in the sufficient condition we can admit arbitrary functions . with values in (0,1), defined for .>0 in a neighborhood of .=0 and satisfying
30#
發(fā)表于 2025-3-26 20:45:11 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2026-1-20 19:27
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
峨眉山市| 大城县| 古田县| 云阳县| 长葛市| 旌德县| 衡水市| 儋州市| 靖宇县| 松阳县| 台北县| 临漳县| 玉树县| 封丘县| 长治县| 贵州省| 五寨县| 绥德县| 惠安县| 安康市| 台安县| 武定县| 鸡东县| 柯坪县| 鄢陵县| 南岸区| 康马县| 图片| 桓台县| 右玉县| 雷山县| 玛多县| 吴旗县| 安泽县| 隆林| 金寨县| 湟中县| 彰武县| 阿拉善盟| 谷城县| 巴东县|