找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Smart Meter Data Analytics; Electricity Consumer Yi Wang,Qixin Chen,Chongqing Kang Book 2020 Science Press and Springer Nature Singapore Pt

[復(fù)制鏈接]
樓主: Magnanimous
31#
發(fā)表于 2025-3-26 21:29:13 | 只看該作者
32#
發(fā)表于 2025-3-27 04:18:26 | 只看該作者
33#
發(fā)表于 2025-3-27 06:00:42 | 只看該作者
Electricity Theft Detection,nd more difficult to detect. Thus, a data analytics method for detecting various types of electricity thefts is required. However, the existing methods either require a labeled dataset or additional system information which is difficult to obtain in reality or have poor detection accuracy. In this c
34#
發(fā)表于 2025-3-27 11:52:55 | 只看該作者
35#
發(fā)表于 2025-3-27 15:45:52 | 只看該作者
Partial Usage Pattern Extraction,ommunication and storage of big data from smart meters at a reduced cost which has been discussed in Chap. .. The other one is the effective extraction of useful information from this massive dataset. In this chapter, the K-SVD sparse representation technique, which includes two phases (dictionary l
36#
發(fā)表于 2025-3-27 21:30:17 | 只看該作者
37#
發(fā)表于 2025-3-28 01:45:05 | 只看該作者
Socio-demographic Information Identification, automatically extracts features from massive load profiles. A support vector machine (SVM) then identifies the characteristics of the consumers. Comprehensive comparisons with state-of-the-art and advanced machine learning techniques are conducted. Case studies on an Irish dataset demonstrate the e
38#
發(fā)表于 2025-3-28 02:56:06 | 只看該作者
39#
發(fā)表于 2025-3-28 07:10:42 | 只看該作者
Clustering of Consumption Behavior Dynamics, customers’ electricity consumption behaviors via load profiling. Instead of focusing on the shape of the load curves, this chapter proposes a novel approach for the clustering of electricity consumption behavior dynamics, where “dynamics” refer to transitions and relations between consumption behav
40#
發(fā)表于 2025-3-28 11:18:09 | 只看該作者
Probabilistic Residential Load Forecasting,forecasting possible. Compared to aggregated loads, load forecasting for individual consumers is prone to non-stationary and stochastic features. In this chapter, a probabilistic load forecasting method for individual consumers is proposed to handle the variability and uncertainty of future load pro
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 08:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
福清市| 武冈市| 宁城县| 日喀则市| 海宁市| 原平市| 惠东县| 屯留县| 砀山县| 峡江县| 龙泉市| 茶陵县| 萝北县| 广宗县| 武川县| 墨竹工卡县| 弋阳县| 富裕县| 乡城县| 洪湖市| 元氏县| 那坡县| 永安市| 达孜县| 海宁市| 栾川县| 镇宁| 崇阳县| 贡山| 新昌县| 瓮安县| 突泉县| 濮阳市| 满洲里市| 彭泽县| 蒙自县| 格尔木市| 池州市| 台江县| 禹城市| 怀宁县|