找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Smart Meter Data Analytics; Electricity Consumer Yi Wang,Qixin Chen,Chongqing Kang Book 2020 Science Press and Springer Nature Singapore Pt

[復制鏈接]
樓主: Magnanimous
31#
發(fā)表于 2025-3-26 21:29:13 | 只看該作者
32#
發(fā)表于 2025-3-27 04:18:26 | 只看該作者
33#
發(fā)表于 2025-3-27 06:00:42 | 只看該作者
Electricity Theft Detection,nd more difficult to detect. Thus, a data analytics method for detecting various types of electricity thefts is required. However, the existing methods either require a labeled dataset or additional system information which is difficult to obtain in reality or have poor detection accuracy. In this c
34#
發(fā)表于 2025-3-27 11:52:55 | 只看該作者
35#
發(fā)表于 2025-3-27 15:45:52 | 只看該作者
Partial Usage Pattern Extraction,ommunication and storage of big data from smart meters at a reduced cost which has been discussed in Chap. .. The other one is the effective extraction of useful information from this massive dataset. In this chapter, the K-SVD sparse representation technique, which includes two phases (dictionary l
36#
發(fā)表于 2025-3-27 21:30:17 | 只看該作者
37#
發(fā)表于 2025-3-28 01:45:05 | 只看該作者
Socio-demographic Information Identification, automatically extracts features from massive load profiles. A support vector machine (SVM) then identifies the characteristics of the consumers. Comprehensive comparisons with state-of-the-art and advanced machine learning techniques are conducted. Case studies on an Irish dataset demonstrate the e
38#
發(fā)表于 2025-3-28 02:56:06 | 只看該作者
39#
發(fā)表于 2025-3-28 07:10:42 | 只看該作者
Clustering of Consumption Behavior Dynamics, customers’ electricity consumption behaviors via load profiling. Instead of focusing on the shape of the load curves, this chapter proposes a novel approach for the clustering of electricity consumption behavior dynamics, where “dynamics” refer to transitions and relations between consumption behav
40#
發(fā)表于 2025-3-28 11:18:09 | 只看該作者
Probabilistic Residential Load Forecasting,forecasting possible. Compared to aggregated loads, load forecasting for individual consumers is prone to non-stationary and stochastic features. In this chapter, a probabilistic load forecasting method for individual consumers is proposed to handle the variability and uncertainty of future load pro
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 09:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
梅河口市| 日照市| 前郭尔| 潮安县| 永嘉县| 松溪县| 青阳县| 东丰县| 延吉市| 互助| 潮州市| 紫云| 兴国县| 甘肃省| 茶陵县| 沽源县| 德格县| 房产| 江阴市| 长顺县| 深泽县| 京山县| 镇安县| 武川县| 龙州县| 玛多县| 拜泉县| 始兴县| 西畴县| 海晏县| 阿拉尔市| 海门市| 临湘市| 桐梓县| 赞皇县| 西盟| 河西区| 宝应县| 南昌县| 丘北县| 余干县|