找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Smart Cities: Big Data Prediction Methods and Applications; Hui Liu Book 2020 Springer Nature Singapore Pte Ltd. 2020 Smart Cities.Big Dat

[復(fù)制鏈接]
樓主: 指責(zé)
21#
發(fā)表于 2025-3-25 06:53:51 | 只看該作者
http://image.papertrans.cn/s/image/868665.jpg
22#
發(fā)表于 2025-3-25 09:35:38 | 只看該作者
23#
發(fā)表于 2025-3-25 14:13:17 | 只看該作者
978-981-15-2839-2Springer Nature Singapore Pte Ltd. 2020
24#
發(fā)表于 2025-3-25 17:14:34 | 只看該作者
Hui LiuBroadens readers‘ understanding of the smart cities.Describes in detail the latest theories and specific applications of smart time series prediction methods in smart cities, as well as a big data fra
25#
發(fā)表于 2025-3-26 00:03:21 | 只看該作者
scientists, engineers, college students, postgraduates, teachers and managers from various fields of artificial intelligence, smart cities, smart grid, intelligent traffic systems, intelligent environments and big data computing..978-981-15-2839-2978-981-15-2837-8
26#
發(fā)表于 2025-3-26 03:05:40 | 只看該作者
, and presents a wide range of applications to allow readers to understand the role of facility location in such areas and learn how to handle real-world location problems..The book is intend978-3-030-32179-6978-3-030-32177-2
27#
發(fā)表于 2025-3-26 04:35:40 | 只看該作者
stic location problems..The book is intended for researchers working on theory and applications involving location problems and models. It is also suitable as a textbook for graduate courses on facility locatio978-3-319-34290-0978-3-319-13111-5
28#
發(fā)表于 2025-3-26 08:36:21 | 只看該作者
Prediction Model of Traffic Flow Driven Based on Single Data in Smart Traffic Systemse WD-BP predictive model is higher than the BP predictive model in the deterministic forecast of traffic flow. In the interval prediction of traffic flow, BP neural network is used to establish a deterministic prediction model, and the GARCH model is used to calculate the uncertainty of forecasting
29#
發(fā)表于 2025-3-26 12:39:06 | 只看該作者
Prediction Models of Urban Air Quality in Smart Environment compared and analyzed. The results show that the prediction of pollutant concentrations after effectively extracting the main characteristics of air pollution is feasible. On this basis, this chapter also puts forward the big data calculation framework of two air pollution prediction models as a re
30#
發(fā)表于 2025-3-26 17:19:53 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 09:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
胶州市| 得荣县| 习水县| 本溪市| 桂平市| 景泰县| 衡山县| 土默特左旗| 宁化县| 丰城市| 昭通市| 宣威市| 新邵县| 东光县| 哈尔滨市| 金阳县| 合肥市| 九龙坡区| 上犹县| 柳河县| 沙湾县| 韩城市| 沂水县| 积石山| 贵定县| 方正县| 特克斯县| 炉霍县| 徐州市| 夹江县| 云梦县| 华阴市| 晋城| 喜德县| 喀什市| 丰都县| 屏边| 万载县| 永善县| 临洮县| 化州市|