找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Smart Cities: Big Data Prediction Methods and Applications; Hui Liu Book 2020 Springer Nature Singapore Pte Ltd. 2020 Smart Cities.Big Dat

[復(fù)制鏈接]
樓主: 指責(zé)
11#
發(fā)表于 2025-3-23 13:24:10 | 只看該作者
Characteristics and Analysis of Urban Traffic Flow in Smart Traffic Systemsto solve traffic congestion. The problem studied in this chapter is to establish a vehicle trajectory prediction model based on vehicle historical trajectory data. The research idea is to use machine learning algorithms and neural network algorithms to predict future trajectories after pre-processin
12#
發(fā)表于 2025-3-23 17:40:06 | 只看該作者
13#
發(fā)表于 2025-3-23 19:22:18 | 只看該作者
Prediction Models of Traffic Flow Driven Based on Multi-Dimensional Data in Smart Traffic Systemsjacent road sections will affect the future traffic flow of the target road section. Therefore, this chapter uses the traffic changes of adjacent road sections and the traffic changes of the target road sections to build multi-dimensional datasets. Based on different model frameworks, four traffic f
14#
發(fā)表于 2025-3-23 22:49:44 | 只看該作者
15#
發(fā)表于 2025-3-24 05:52:42 | 只看該作者
Prediction Models of Urban Hydrological Status in Smart Environmenthe intelligent embodiment of the intelligent city. In addition to paying attention to its fluctuation state, the river water level is also very important for the accurate prediction of water level height in the future. For this reason, this chapter first constructs the prediction model of water leve
16#
發(fā)表于 2025-3-24 08:58:05 | 只看該作者
17#
發(fā)表于 2025-3-24 13:46:01 | 只看該作者
18#
發(fā)表于 2025-3-24 15:16:41 | 只看該作者
Prediction Models of Energy Consumption in Smart Urban Buildingsaset in the simulation results of DeST software, and an intelligent prediction method for energy consumption of a building in Changsha is proposed. Similarly, the big data computing framework is constructed according to the proposed prediction model to provide support for the design and operation of intelligent buildings in smart cities.
19#
發(fā)表于 2025-3-24 22:20:10 | 只看該作者
20#
發(fā)表于 2025-3-25 00:47:35 | 只看該作者
Book 2020t big data predicting techniques...?This timely book discusses big data forecasting for smart cities. It introduces big data forecasting techniques for the key aspects (e.g., traffic, environment, building energy, green grid, etc.) of smart cities, and explores three key areas that can be improved u
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 19:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宾川县| 常熟市| 蒙山县| 新和县| 康平县| 涟源市| 汾西县| 深泽县| 金阳县| 泰州市| 隆化县| 大英县| 大同市| 新兴县| 常熟市| 泗阳县| 南川市| 武汉市| 玛曲县| 江陵县| 西青区| 德保县| 景东| 宝应县| 古浪县| 怀远县| 南宫市| 株洲县| 乌兰浩特市| 鸡西市| 汝南县| 洛浦县| 珲春市| 恩施市| 萨迦县| 安康市| 定兴县| 绍兴县| 涞水县| 贺州市| 上蔡县|