找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Singularities in Fluids, Plasmas and Optics; Russel E. Caflisch,George C. Papanicolaou Book 1993 Springer Science+Business Media Dordrecht

[復(fù)制鏈接]
樓主: 驅(qū)逐
41#
發(fā)表于 2025-3-28 15:34:32 | 只看該作者
Book 1993 method of complex variables for the analysis andcomputation of singularities on fluid interfaces, and studies ofsingularities for the 3-D Euler equations. The book is suitable forgraduate students and researchers in these areas..
42#
發(fā)表于 2025-3-28 21:30:55 | 只看該作者
43#
發(fā)表于 2025-3-28 23:39:27 | 只看該作者
Solitons, Euler’s Equation, and the Geometry of Curve Motionsult paralleling the connection between the Nonlinear Schr?dinger equation and the motion of a vortex filament in space. The Hamiltonian structure of these integrable systems is recast in a form emphasizing the geometric interpretation in the language of curve motion. Applications of these results to physical systems are suggested.
44#
發(fā)表于 2025-3-29 05:59:11 | 只看該作者
Well-posed Numerical Calculations for Free-Surface Flowsll-posed; small deviations in initial conditions lead to dramatic changes in the subsequent motion. Our method is based on the analytic continuation of the equations for the location of the interface into the complex unphysical plane. Specifically in two-dimensions, we let (.(.),.(.)) be the paramet
45#
發(fā)表于 2025-3-29 08:20:48 | 只看該作者
46#
發(fā)表于 2025-3-29 11:33:06 | 只看該作者
47#
發(fā)表于 2025-3-29 18:57:24 | 只看該作者
Singularity Formation for Models of Axi-Symmetric Swirling Flowder system in “Jordan form.” The second is a one dimensional analogue of the 2D Boussinesq system. In the third example, a complex solution of the axi-symmetric swirling flow equations is numerically constructed. This solution is a traveling wave with a complex wave speed that brings a singularity f
48#
發(fā)表于 2025-3-29 21:57:55 | 只看該作者
49#
發(fā)表于 2025-3-30 02:26:51 | 只看該作者
50#
發(fā)表于 2025-3-30 06:18:48 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 17:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
信阳市| 麻栗坡县| 卢氏县| 收藏| 边坝县| 双江| 甘洛县| 宣武区| 乐昌市| 石台县| 封丘县| 忻州市| 获嘉县| 黄大仙区| 眉山市| 北宁市| 阳朔县| 通化市| 庆城县| 逊克县| 沾益县| 仙游县| 广汉市| 漾濞| 淮北市| 彰化市| 望奎县| 泰安市| 隆德县| 江城| 马边| 青海省| 衡山县| 水富县| 景德镇市| 祁东县| 兰州市| 高青县| 兰州市| 高阳县| 莱阳市|