找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Singularities and Groups in Bifurcation Theory; Volume II Martin Golubitsky,Ian Stewart,David G. Schaeffer Book 1988 Springer-Verlag New Yo

[復(fù)制鏈接]
查看: 16244|回復(fù): 52
樓主
發(fā)表于 2025-3-21 17:18:53 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Singularities and Groups in Bifurcation Theory
副標(biāo)題Volume II
編輯Martin Golubitsky,Ian Stewart,David G. Schaeffer
視頻videohttp://file.papertrans.cn/868/867922/867922.mp4
叢書(shū)名稱(chēng)Applied Mathematical Sciences
圖書(shū)封面Titlebook: Singularities and Groups in Bifurcation Theory; Volume II Martin Golubitsky,Ian Stewart,David G. Schaeffer Book 1988 Springer-Verlag New Yo
描述Bifurcation theory studies how the structure of solutions to equations changes as parameters are varied. The nature of these changes depends both on the number of parameters and on the symmetries of the equations. Volume I discusses how singularity-theoretic techniques aid the understanding of transitions in multiparameter systems. This volume focuses on bifurcation problems with symmetry and shows how group-theoretic techniques aid the understanding of transitions in symmetric systems. Four broad topics are covered: group theory and steady-state bifurcation, equicariant singularity theory, Hopf bifurcation with symmetry, and mode interactions. The opening chapter provides an introduction to these subjects and motivates the study of systems with symmetry. Detailed case studies illustrate how group-theoretic methods can be used to analyze specific problems arising in applications.
出版日期Book 1988
關(guān)鍵詞Group theory; Irreducibility; Lattice; group action; invariant theory; partial differential equation
版次1
doihttps://doi.org/10.1007/978-1-4612-4574-2
isbn_softcover978-1-4612-8929-6
isbn_ebook978-1-4612-4574-2Series ISSN 0066-5452 Series E-ISSN 2196-968X
issn_series 0066-5452
copyrightSpringer-Verlag New York, Inc. 1988
The information of publication is updating

書(shū)目名稱(chēng)Singularities and Groups in Bifurcation Theory影響因子(影響力)




書(shū)目名稱(chēng)Singularities and Groups in Bifurcation Theory影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Singularities and Groups in Bifurcation Theory網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Singularities and Groups in Bifurcation Theory網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Singularities and Groups in Bifurcation Theory被引頻次




書(shū)目名稱(chēng)Singularities and Groups in Bifurcation Theory被引頻次學(xué)科排名




書(shū)目名稱(chēng)Singularities and Groups in Bifurcation Theory年度引用




書(shū)目名稱(chēng)Singularities and Groups in Bifurcation Theory年度引用學(xué)科排名




書(shū)目名稱(chēng)Singularities and Groups in Bifurcation Theory讀者反饋




書(shū)目名稱(chēng)Singularities and Groups in Bifurcation Theory讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:08:46 | 只看該作者
Symmetry-Breaking in Steady-State Bifurcation,tion of a compact Lie group Γ on . ?.. Steady-state solutions satisfy . 0; that is, . We focus here on the symmetries that a solution . may possess and in particular define some simple “geometric” notions that will prove to be of central importance.
板凳
發(fā)表于 2025-3-22 00:43:50 | 只看該作者
,The Planar Bénard Problem,vitational field; motion occurs because hotter fluid is less dense and therefore tends to rise. In this Case Study we consider only carefully controlled laboratory experiments in which a horizontal layer of fluid is heated from below and the ensuing motion is observed. Of course, such experiments ar
地板
發(fā)表于 2025-3-22 06:33:46 | 只看該作者
5#
發(fā)表于 2025-3-22 12:15:11 | 只看該作者
6#
發(fā)表于 2025-3-22 14:07:38 | 只看該作者
,The Traction Problem for Mooney—Rivlin Material,pontaneous symmetry-breaking and to describe the kinds of results that can be obtained by a singularity-theoretic analysis. This case study has a different aim: to present complete calculations supporting the singularity theory analysis of a specific bifurcation problem. The Rivlin cube is an ideal
7#
發(fā)表于 2025-3-22 17:09:42 | 只看該作者
8#
發(fā)表于 2025-3-23 00:58:10 | 只看該作者
9#
發(fā)表于 2025-3-23 03:54:04 | 只看該作者
Further Examples of Hopf Bifurcation with Symmetry,al group symmetry ., systems with .(3) symmetry (corresponding to any irreducible representation), and systems with the symmetry . +? . of the hexagonal lattice. For . and . +? . we consider the stability of bifurcating branches. These examples illustrate several features of specific applications th
10#
發(fā)表于 2025-3-23 06:56:03 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-28 03:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
天津市| 衡阳县| 遂昌县| 白城市| 无极县| 如东县| 南涧| 景东| 铁岭市| 泾川县| 萝北县| 高淳县| 镇安县| 招远市| 通辽市| 鄂州市| 商南县| 济宁市| 织金县| 松溪县| 军事| 巴林右旗| 北辰区| 余江县| 章丘市| 丰原市| 合阳县| 田东县| 晋宁县| 丹江口市| 松溪县| 曲松县| 得荣县| 乐山市| 平凉市| 广州市| 久治县| 伊金霍洛旗| 澎湖县| 鄯善县| 贵溪市|