找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Singularities and Foliations. Geometry, Topology and Applications; BMMS 2/NBMS 3, Salva Raimundo Nonato Araújo dos Santos,Aurélio Menegon

[復(fù)制鏈接]
樓主: Remodeling
11#
發(fā)表于 2025-3-23 10:17:30 | 只看該作者
José Seadeto the ROCO superfamily of proteins, characterized by a Ras-of-complex (Roc) GTPase domain in tandem with a C-terminal-of-Roc (COR) domain. LRRK2 also contains a protein kinase domain adjacent to the Roc-COR tandem domain in addition to multiple repeat domains. Disease-causing familial mutations clu
12#
發(fā)表于 2025-3-23 15:19:52 | 只看該作者
ponses against microorganisms. Dendritic cells (DCs), including epidermal Langerhans cells and dermal DCs, specialize in recognizing and capturing foreign antigens as well as in the activation of naive T cells, and are thus essential for the induction of immune responses. T lymphocytes transduce ant
13#
發(fā)表于 2025-3-23 21:37:23 | 只看該作者
Leonardo M. Camara,Bruno Scárduaion, inflammation, or proliferation (Springer 1994; Butcher and Picker 1996; Mazo and von Andrian 1999). Recruitment of different subsets of leukocytes and circulating malignant cells to these sites is tightly regulated by sequential adhesive interactions between specific protein receptors on their
14#
發(fā)表于 2025-3-23 22:52:05 | 只看該作者
15#
發(fā)表于 2025-3-24 05:27:38 | 只看該作者
https://doi.org/10.1007/978-3-319-73639-6Singularities; Equisingularity; Milnor Fibration; Foliations; Mappings; Conference Proceedings; Research; 5
16#
發(fā)表于 2025-3-24 07:30:39 | 只看該作者
978-3-030-08826-2Springer International Publishing AG, part of Springer Nature 2018
17#
發(fā)表于 2025-3-24 13:19:02 | 只看該作者
Singularities and Foliations. Geometry, Topology and Applications978-3-319-73639-6Series ISSN 2194-1009 Series E-ISSN 2194-1017
18#
發(fā)表于 2025-3-24 16:17:15 | 只看該作者
Topology of Real SingularitiesIn this mini-course, we study the topology of real singularities. After recalling basic notions and classical results of differential topology, we present formulas for topological invariants of semi-analytic or semi-algebraic sets due to several authors.
19#
發(fā)表于 2025-3-24 22:21:50 | 只看該作者
20#
發(fā)表于 2025-3-24 23:42:40 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 23:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
突泉县| 铜陵市| 昌宁县| 仲巴县| 荣成市| 南平市| 仙居县| 南和县| 江孜县| 保靖县| 文安县| 高陵县| 吉林市| 天津市| 楚雄市| 广昌县| 晋州市| 佛冈县| 兴和县| 西充县| 朔州市| 仁化县| 军事| 剑川县| 商都县| 河南省| 阿图什市| 古蔺县| 怀仁县| 英德市| 陇西县| 永嘉县| 祁东县| 长武县| 元江| 望都县| 平邑县| 南雄市| 岐山县| 景泰县| 伊春市|