找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Singular Spectrum Analysis for Time Series; Nina Golyandina,Anatoly Zhigljavsky Book 20131st edition The Author(s) 2013 data analysis.fore

[復(fù)制鏈接]
查看: 28548|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:25:41 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Singular Spectrum Analysis for Time Series
編輯Nina Golyandina,Anatoly Zhigljavsky
視頻videohttp://file.papertrans.cn/868/867913/867913.mp4
概述Presents the methodology of SSA.Shows how to use SSA both safely and with maximum effect.For professional statisticians, econometricians and specialists in any discipline.For students taking courses o
叢書名稱SpringerBriefs in Statistics
圖書封面Titlebook: Singular Spectrum Analysis for Time Series;  Nina Golyandina,Anatoly Zhigljavsky Book 20131st edition The Author(s) 2013 data analysis.fore
描述Singular spectrum analysis (SSA) is a technique of time series analysis and forecasting combining elements of classical time series analysis, multivariate statistics, multivariate geometry, dynamical systems and signal processing. SSA seeks to decompose the original series into a sum of a small number of interpretable components such as trend, oscillatory components and noise. It is based on the singular value decomposition of a specific matrix constructed upon the time series. Neither a parametric model nor stationarity are assumed for the time series. This makes SSA a model-free method and hence enables SSA to have a very wide range of applicability. The present book is devoted to the methodology of SSA and shows how to use SSA both safely and with maximum effect. Potential readers of the book include: professional statisticians and econometricians, specialists in any discipline in which problems of time series analysis and forecasting occur, specialists in signal processing and those needed to extract signals from noisy data, and students taking courses on applied time series analysis.
出版日期Book 20131st edition
關(guān)鍵詞data analysis; forecasting; signal processing; singular value decomposition; time series
版次1
doihttps://doi.org/10.1007/978-3-642-34913-3
isbn_ebook978-3-642-34913-3Series ISSN 2191-544X Series E-ISSN 2191-5458
issn_series 2191-544X
copyrightThe Author(s) 2013
The information of publication is updating

書目名稱Singular Spectrum Analysis for Time Series影響因子(影響力)




書目名稱Singular Spectrum Analysis for Time Series影響因子(影響力)學(xué)科排名




書目名稱Singular Spectrum Analysis for Time Series網(wǎng)絡(luò)公開度




書目名稱Singular Spectrum Analysis for Time Series網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Singular Spectrum Analysis for Time Series被引頻次




書目名稱Singular Spectrum Analysis for Time Series被引頻次學(xué)科排名




書目名稱Singular Spectrum Analysis for Time Series年度引用




書目名稱Singular Spectrum Analysis for Time Series年度引用學(xué)科排名




書目名稱Singular Spectrum Analysis for Time Series讀者反饋




書目名稱Singular Spectrum Analysis for Time Series讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:22:48 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:58:36 | 只看該作者
地板
發(fā)表于 2025-3-22 04:54:11 | 只看該作者
Nina Golyandina,Anatoly Zhigljavskygh this phenomenon has been the subject of intense laboratory investigation, assessment of its clinical relevance has been difficult. The majority of patients with acute myocardial infarction undergoing coronary thrombolysis and/or angioplasty, or even those patients with Prinzmetal’s angina have no
5#
發(fā)表于 2025-3-22 11:32:12 | 只看該作者
Introduction,Singular spectrum analysis (SSA) is a technique of time series analysis and forecasting. It combines elements of classical time series analysis, multivariate statistics, multivariate geometry, dynamical systems and signal processing.
6#
發(fā)表于 2025-3-22 15:01:52 | 只看該作者
7#
發(fā)表于 2025-3-22 19:00:35 | 只看該作者
Nina Golyandina,Anatoly ZhigljavskyPresents the methodology of SSA.Shows how to use SSA both safely and with maximum effect.For professional statisticians, econometricians and specialists in any discipline.For students taking courses o
8#
發(fā)表于 2025-3-22 23:50:35 | 只看該作者
9#
發(fā)表于 2025-3-23 01:29:56 | 只看該作者
https://doi.org/10.1007/978-3-642-34913-3data analysis; forecasting; signal processing; singular value decomposition; time series
10#
發(fā)表于 2025-3-23 08:56:07 | 只看該作者
Singular Spectrum Analysis for Time Series978-3-642-34913-3Series ISSN 2191-544X Series E-ISSN 2191-5458
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 01:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
清水县| 江山市| 万源市| 德钦县| 武安市| 华池县| 陆丰市| 沧源| 芜湖市| 宝清县| 绍兴市| 天等县| 汉中市| 泸水县| 郓城县| 萝北县| 崇文区| 冕宁县| 钦州市| 泰安市| 孙吴县| 海兴县| 平山县| 嘉禾县| 黄龙县| 兴宁市| 敦化市| 苏州市| 连南| 普安县| 大丰市| 景洪市| 四子王旗| 许昌县| 郓城县| 行唐县| 梁山县| 庄河市| 利川市| 桦川县| 扶余县|