找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Singular Spectrum Analysis for Time Series; Nina Golyandina,Anatoly Zhigljavsky Book 2020Latest edition The Author(s), under exclusive lic

[復(fù)制鏈接]
樓主: decoction
11#
發(fā)表于 2025-3-23 09:48:44 | 只看該作者
12#
發(fā)表于 2025-3-23 16:39:33 | 只看該作者
2191-544X essing (2D-SSA).Illustrated with examples and case studiesThis book gives an overview of singular spectrum analysis (SSA). SSA is a technique of time series analysis and forecasting? combining? elements of classical time series analysis, multivariate statistics, multivariate geometry, dynamical syst
13#
發(fā)表于 2025-3-23 22:01:12 | 只看該作者
Introduction,ies analysis and signal processing. The R-based package Rssa, a powerful and comprehensive implementation of SSA-related techniques, is introduced. A list of the main symbols and several historical and bibliographical remarks conclude Chap. 1.
14#
發(fā)表于 2025-3-23 22:11:38 | 只看該作者
15#
發(fā)表于 2025-3-24 06:09:46 | 只看該作者
SSA for Forecasting, Interpolation, Filtering and Estimation,ion that the components of the original time series, which are extracted by SSA, satisfy (at least, locally) certain linear recurrence relations. The main emphasis in Chap. 3 is on time series forecasting and different methods of checking stability and adequacy of forecasts. Other related problems s
16#
發(fā)表于 2025-3-24 08:38:38 | 只看該作者
Book 2020Latest editionassical time series analysis, multivariate statistics, multivariate geometry, dynamical systems and signal processing. SSA is multi-purpose and naturally combines both model-free and parametric techniques, which makes it a very special and attractive methodology for solving a wide range of problems
17#
發(fā)表于 2025-3-24 13:29:26 | 只看該作者
Basic SSA,ifferent matrix norms, as well as the use of prior and posterior information. Chapter 2 concludes with a description of multidimensional and multivariate extensions of SSA, which are applied to collections of time series and digital images respectively.
18#
發(fā)表于 2025-3-24 18:06:10 | 只看該作者
SSA for Forecasting, Interpolation, Filtering and Estimation,uch as imputation of missing values, interpolation and filtering are examined. Chapter 3 also surveys methods of parameter estimation of the models; such methods are very popular in signal processing. Chapter 3 concludes with descriptions of model-based extensions of multivariate and multidimensional SSA.
19#
發(fā)表于 2025-3-24 19:33:59 | 只看該作者
20#
發(fā)表于 2025-3-25 03:05:08 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 07:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
务川| 渝北区| 石泉县| 涞水县| 将乐县| 军事| 萝北县| 福泉市| 北票市| 上栗县| 泸溪县| 额敏县| 炉霍县| 南澳县| 孝义市| 陇南市| 湛江市| 嵊泗县| 门头沟区| 简阳市| 湘阴县| 潞城市| 比如县| 旺苍县| 靖江市| 金沙县| 辽源市| 光山县| 阿勒泰市| 马公市| 武平县| 剑河县| 岑巩县| 平塘县| 汶川县| 綦江县| 陕西省| 包头市| 宁阳县| 曲阜市| 乐至县|