找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Singular Nonlinear Partial Differential Equations; Raymond Gérard,Hidetoshi Tahara Book 1996 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH

[復制鏈接]
樓主: 寓言
11#
發(fā)表于 2025-3-23 13:35:27 | 只看該作者
12#
發(fā)表于 2025-3-23 15:18:35 | 只看該作者
,Maillet’s type theorems for non linear singular partial differential equations without linear part,d explicitly. We showed also in [19] (see also section 6.4 of chapter 6) that for some particular equations the number . (?) is the exact formal Gevrey index of ?. The main assumption in chapter 6 was that the equation (6.3.1) has a linear part.
13#
發(fā)表于 2025-3-23 19:00:08 | 只看該作者
14#
發(fā)表于 2025-3-24 01:09:19 | 只看該作者
Operators with regular singularities: Several variables case, studying formal linear equations and then we are looking at the analytic case. This means that we are giving conditions under which the formal power series solutions that we obtained in part A are convergent.
15#
發(fā)表于 2025-3-24 05:06:40 | 只看該作者
16#
發(fā)表于 2025-3-24 08:17:46 | 只看該作者
Local study of differential equations of the form , = , near , = 0,olomorphic near the origin of ?.. In particular, we are looking for a normal form of (4.0.1). We have a transformation . which is reducing (4.0.1) to a normal form and this transformation is given as a solution of a partial differential equation of the form . where . is holomorphic near the origin o
17#
發(fā)表于 2025-3-24 13:28:28 | 只看該作者
18#
發(fā)表于 2025-3-24 18:16:10 | 只看該作者
19#
發(fā)表于 2025-3-24 22:03:24 | 只看該作者
20#
發(fā)表于 2025-3-24 23:28:50 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 18:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
永靖县| 永春县| 德兴市| 定南县| 长顺县| 金湖县| 迁安市| 延川县| 重庆市| 城市| 当雄县| 文登市| 通州市| 改则县| 昆明市| 华阴市| 扬中市| 菏泽市| 峨边| 米易县| 上犹县| 邹平县| 牡丹江市| 贡嘎县| 繁峙县| 崇左市| 行唐县| 龙泉市| 扬州市| 霸州市| 兰溪市| 图片| 泾阳县| 江油市| 临沂市| 古田县| 安仁县| 沅江市| 北安市| 丽水市| 如东县|