找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Singular Nonlinear Partial Differential Equations; Raymond Gérard,Hidetoshi Tahara Book 1996 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH

[復制鏈接]
樓主: 寓言
11#
發(fā)表于 2025-3-23 13:35:27 | 只看該作者
12#
發(fā)表于 2025-3-23 15:18:35 | 只看該作者
,Maillet’s type theorems for non linear singular partial differential equations without linear part,d explicitly. We showed also in [19] (see also section 6.4 of chapter 6) that for some particular equations the number . (?) is the exact formal Gevrey index of ?. The main assumption in chapter 6 was that the equation (6.3.1) has a linear part.
13#
發(fā)表于 2025-3-23 19:00:08 | 只看該作者
14#
發(fā)表于 2025-3-24 01:09:19 | 只看該作者
Operators with regular singularities: Several variables case, studying formal linear equations and then we are looking at the analytic case. This means that we are giving conditions under which the formal power series solutions that we obtained in part A are convergent.
15#
發(fā)表于 2025-3-24 05:06:40 | 只看該作者
16#
發(fā)表于 2025-3-24 08:17:46 | 只看該作者
Local study of differential equations of the form , = , near , = 0,olomorphic near the origin of ?.. In particular, we are looking for a normal form of (4.0.1). We have a transformation . which is reducing (4.0.1) to a normal form and this transformation is given as a solution of a partial differential equation of the form . where . is holomorphic near the origin o
17#
發(fā)表于 2025-3-24 13:28:28 | 只看該作者
18#
發(fā)表于 2025-3-24 18:16:10 | 只看該作者
19#
發(fā)表于 2025-3-24 22:03:24 | 只看該作者
20#
發(fā)表于 2025-3-24 23:28:50 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 18:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
乌兰浩特市| 鸡泽县| 宣恩县| 潜山县| 纳雍县| 雷波县| 乌恰县| 江源县| 汤阴县| 定兴县| 内江市| 邻水| 庄浪县| 大城县| 澄迈县| 龙州县| 英超| 屯门区| 庄浪县| 邵阳市| 高州市| 莱阳市| 大庆市| 永吉县| 鹿泉市| 屯门区| 廉江市| 阿拉善左旗| 青川县| 海阳市| 措勤县| 临沭县| 藁城市| 巴青县| 新邵县| 资阳市| 赤城县| 太和县| 乐昌市| 沾益县| 天镇县|