找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Singular Integrals and Fourier Theory on Lipschitz Boundaries; Tao Qian,Pengtao Li Book 2019 Springer Nature Singapore Pte Ltd. and Scienc

[復(fù)制鏈接]
樓主: hearken
11#
發(fā)表于 2025-3-23 10:37:08 | 只看該作者
12#
發(fā)表于 2025-3-23 15:14:25 | 只看該作者
Clifford Analysis, Dirac Operator and the Fourier Transform, to establish the theory of convolution singular integrals and Fourier multipliers on Lipschitz surfaces. In Sect.?., we give a brief survey on basics of Clifford analysis. In Sect.?., we state the monogenic functions on sectors introduced by Li, McIntosh, Qian [.]. Section?. is devoted to the Fouri
13#
發(fā)表于 2025-3-23 21:18:12 | 只看該作者
Convolution Singular Integral Operators on Lipschitz Surfaces,rators on the Lipschitz surfaces . is a meaningful question. The increase of the dimensions means that we need to apply a new method to solve the above question. In 1994, C. Li, A. McIntosh and S. Semmes embedded . into Clifford algebra . and considered the class of holomorphic functions on the sect
14#
發(fā)表于 2025-3-24 00:39:25 | 只看該作者
Holomorphic Fourier Multipliers on Infinite Lipschitz Surfaces,perators on the Euclidean spaces .. Because Plancherel’s identity involving the Fourier transform is invalid on Lipschitz surfaces ., the relation between singular Cauchy integral operators and Fourier multipliers on . is an open problem for a long time. In 1994, by the aid of Clifford analysis, Li,
15#
發(fā)表于 2025-3-24 02:45:02 | 只看該作者
Bounded Holomorphic Fourier Multipliers on Closed Lipschitz Surfaces, integrals and Fourier multipliers for the case of starlike Lipschitz curves on the complex plane. The cases of .tours and their Lipschitz disturbance are studied in [., .]. In 1998 and 2001, by a generalization of Fueter’s theorem, T. Qian established the theory of bounded holomorphic Fourier multi
16#
發(fā)表于 2025-3-24 09:47:59 | 只看該作者
The Fractional Fourier Multipliers on Lipschitz Curves and Surfaces,ecent years, see the author’s paper joint with Leong [.] and the joint work [.]. In the above chapters, we state the convolution singular integral operators and the related bounded holomorphic Fourier multipliers on the finite and infinite Lipschitz curves and surfaces. Let . and . be the regions de
17#
發(fā)表于 2025-3-24 14:09:30 | 只看該作者
Book 2019itz curves and surfaces, an area that has been developed since the 1980s. The subject of singular integrals and the related Fourier multipliers on Lipschitz curves and surfaces has an extensive background in harmonic analysis and partial differential equations. The book elaborates on the basic frame
18#
發(fā)表于 2025-3-24 16:13:38 | 只看該作者
19#
發(fā)表于 2025-3-24 19:40:41 | 只看該作者
20#
發(fā)表于 2025-3-25 01:12:41 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 04:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
东明县| 神农架林区| 岳阳市| 喀喇| 宁津县| 西和县| 石楼县| 永川市| 赣州市| 中超| 五台县| 吉林市| 甘南县| 富裕县| 师宗县| 鹤峰县| 屏南县| 阜康市| 茶陵县| 景宁| 常熟市| 天祝| 松江区| 威信县| 铜山县| 汝州市| 惠州市| 泽普县| 博爱县| 米脂县| 颍上县| 沙坪坝区| 油尖旺区| 博乐市| 黔东| 成都市| 莱阳市| 岗巴县| 紫阳县| 偏关县| 赞皇县|